Interpolation electronics GEL 212 / 213

for sensors with sinusoidal output 1 $V_{\rm PP}$

Version 03.2014

GEL 212

GEL 213

General information

- conversion of standardized sine signals into square signals up to an interpolation factor of 512
- ► GEL 212 closed housing with 12-pole connector, IP 65
- GEL 213 for top hat rail mounting with terminal strips, IP 20

Input signals

- 2 sine-wave signals shifted by 90° and their inverse signals
- signal level 250 mV_s peak value, per track = 1 V_{PP} as differential signal
- reference signal and inverse reference signal (option)

Output signals

- 2 square-wave signals shifted by 90° and their inverse signals
- reference pulse (option)
- output either with 5 V DC or 0 to 30 V DC signal level
- using quadruple edge evaluation a resolution of up to 2048 pulses per signal period is possible

Fields of applications

- interpolation of sinusoidal signals from the MiniCODER GEL 2442 K/KN/KM, GEL 243 L and rotary encoder GEL 295x K/KN
- interpolation of sine-shaped voltages with an amplitude of 1 V_{PP}

Phone: +49 208 9963-0 Fax: +49 208 676292

Technical data

	T, TN	U, UN	V, VN	X, XN	
Electrical data					
Supply voltage	5 V DC ± 5% 10 to 30 V DC				
Power consumption (without load)	≤ 1 W				
Output signals	2 square-wave signals shifted by 90° and their inversed signals optional: reference signal (N)				
Logic level	TTL, compatible with RS 422 and RS 485		push-pull signal		
Output level high	\geq V _S - 1.00 V at I = 10 mA; \geq V _S - 1.20 V at I = 30 mA	≥ 4.00 V at I = 10 mA; ≥ 3.85 V at I = 30 mA	≥ V _S - 1.80 V at I = 10 mA; ≥ V _S - 2.20 V at I = 30 mA		
Output level low	≤ 0.75 V at I = 10 mA; ≤ 1.00 V at I = 30 mA ≤ 1.5 V at I = 10 mA; ≤ 1.55 V at I = 30 mA			: I = 10 mA; t I = 30 mA	
Input signals	2 sinusoidal signals shifted by 90° and their inversed signals with differential voltage 1 V _{PP} optional: reference signal (N)				
Input frequency	0 to 50 kHz				
Output frequency	max. 200 kHz Input frequency by multiplier (see type code)				
Short wave precision ⁽¹⁾	0,08° ⁽²⁾				
Short wave precision	dependent on the precision of the measuring scale (target wheel)				
Connection data					
Connection	GEL 212: 12-pole circular connectors GEL 213: terminal strips				
Max. permissible cable length ⁽³⁾	25 m for cable cross section 0.5 mm ²				
Ambiant data	•				
Working and operating temperature	-40 °C to +85 °C				
Protection class (EN/IEC 60529)		GEL 21 GEL 21	2: IP 65 3: IP 20		
Vibration protection (EN/IEC 60068-2-6)		200 m/s	s² (20g)		
Electromagnetic compatibility (EMC)	EN/IEC 61000-6-1 bis 4				
Insulation strength (DIN EN 60439-1)	500 V AC				

 ⁽¹⁾ Reffering to a target wheel with 256 teeth and module 0.3
 (2) If sensor and interpolation electronics are matched to one another.

 $^{^{(3)}\,}$ between sensor and the interpolation electronics

Dimensions, **Connection assignment**

90

B1

B2

C1

C2

8 <u>18 1</u>

⊗ 🔯 🕻 A2

A1

Dimensional drawing GEL 212

Output side of GEL 212

Connection assignment input side

Image: Second system A2 Image: Second system A3 Image: Second system A4 Image: Second system A5 Image: Second system A6 Image: Second system A7 D3 🔤 🛛 C3 B3 D4 🔊 🖏 72 C4 Β4 C5 B5 D6 C6 B6 Β7 D7 <u>| 0</u> 0 C7 58.5

Dimensional drawing GEL 213

D1

D2

Output side of GEL 213

Type code

	l	De	sig	n							
	2 (clo	sec	housing							
:	3 1	for	top	hat	rail mounting						
			Sig	jnal j	pattern						
	1	Т	2 s	quar	e-wave signals shifted by 90° and their inversed signals (TTL)						
	1	V	2 s	quar	e-wave signals shifted by 90° (HTL)						
		U	2 s	quar	e-wave signals shifted by 90° and their inversed signals (TTL)						
		X	2 s	quar	e-wave signals shifted by 90° and their inversed signals (HTL)						
				Refe	rence signal						
			-	withc	nout						
			N with reference signal								
					Multiplier						
				01	interpolation factor 1						
				02	interpolation factor 2						
				04	interpolation factor 4						
				08	interpolation factor 8						
				10	interpolation factor 10						
				16	interpolation factor 16						
				20	Interpolation factor 20						
				25	Interpolation factor 25						
				32	Interpolation factor 32						
				40	Interpolation factor 40						
				50	interpolation factor 50						
				04	Interpolation factor 64						
				00	interpolation factor 50						
					interpolation factor 100						
					interpolation factor 128						
					interpolation factor 200						
				FF	interpolation factor 250						
				FF	interpolation factor 256						
				GG	interpolation factor 200						
				нн	interpolation factor 500						
				кк	interpolation factor 512						
				[Sense control						
					0 without						
21	_	_	_		_						

Note

1

When using the GEL 212 or GEL 213 interpolation electronics in combination with a GEL 243 or GEL 2442 sensor or with a GEL 295 encoder the components are factory-adapted to each other (the interpolation electronics has been labelled with the serial number of the sensor/encoder belonging to it). Sensors from **other manufacturers** are to be adapted to the interpolation electronics in the factory.

