VAUTOMATIONDIRECT\$ Relays and Timers

In this interactive PDF you can:

- Use bookmarks to navigate by product category
- Use bookmarks to save, search, print or e-mail the catalog section
- Click on part \#s to link directly to our online store for current pricing, specs, stocking information and

Up-to-date price list: www.automationdirect.com/pricelist

FREE Technical Support:
www.automationdirect.com/support
FREE Videos:
www.automationdirect.com/videos
FREE Documentation:
www.automationdirect.com/documentation
FREE CAD drawings:
www.automationdirect.com/cad

Electromechanical

Electromechanical Square/Cube Relays

QL Series: General purpose relays designed for a wide range of applications. Units plug into DIN-rail mountable relay sockets, with a 10A contact rating. Ideal for electric control panels requiring stable and reliable relays.

QM Series: General purpose relays with a 5A DPDT or 3A 4PDT contact rating, designed for use in applications from power to sequence controls in various factory machines and control panels.

A Full Lineup of Control Relays

Our general purpose industrial relays are a low-cost way of adding control and isolation relays to any application. Electromechanical relays are available in cube, open and card styles for a diverse range of installation requirements. Cube relays are available with standard linear or octal base connection patterns. Solid state relays available include hazardouse location, socket-mount, DIN-rail mount and panel-mount styles.
All relays feature LED indicators for easy troubleshooting.

Cube Relays 78 Series

78 series cube relays, with a 15A contact rating, are ideal for applications demanding high power control in various factory machines and control panels. Available in 24 VAC, 120 VAC, 240 VAC and 24 VDC coil voltages.

Open-Style Power Relays

AD Series

AD-PR40 series power relays are open construction design with high power contacts capable of switching up to 40A. SPDT, DPST and DPDT models are available.

Plug-in Hazardous Location Octal and Square/Cube Relays

H782/H750 Series

H782/H750 series hermetically sealed, ice cube style relays are designed for applications requiring hermetically sealed units for hazardous factory locations. (Class I, Div. 2 Groups A, B, C, D).

Electromechanical Relays

Quality built into every relay

 at an affordable price.Low price combined with industry-demanded quality make our relays one of the best values in automation.
Our manufacturers ensure that nothing is spared in the design and production of our products. By offering them direct to you, AutomationDirect makes certain that you get the same or better quality than other brands at a great price.
Solid State Relays -

Motion: Servos and Steppers

Motor Controls

Sensors:

Class 8 hazardous location series in a slim, space-saving housing (8A, 10A, 15A) with the added feature of being approved for hazardous locations (Class 1, Div. 2, Groups A, B, C, D).
modules are ideal for interfacing electronic control devices with output devices.

Panel Mount Hockey Puck Relays

 AD-SSR5 Series

RS series relays are compact, space-saving, relay terminal modules containing four or six relays with one N.O. contact each.
These relay-and-terminal

- AD-SSR2 Series - AC and DC input, AC output with 10 or 25 Amp loads
- AD-SSR8 Series - Class 8 solid state relays with energy efficient current switching in a slim, space-saving housing
- AD-HSSR8 Series - hazardous location solid state relays (HAZLOC relays)

Electromechanical Relay Selection Guide

Specification	QL Series	QM Series	RS Series Card Relays
Coil Voltages	110/120VAC, 220VAC, 24VDC	110/120VAC, 220VAC, 24VDC	24VDC
Configuration	2PDT, 4PDT	2PDT, 4PDT	SPST (up to six relays)
Contact Rating	10A	5A DPDT ; 3A 4PDT	5A
Base Socket	8 or 14 pin spade terminal	8 or 14 pin spade terminal	-
Agency Approvals	UL Recognized (\#E222847), CE Certified (9667186-9811), CSA Certified (218218)	UL Recognized (\#E222847), CE Ceritified (9667186-9811), CSA Certified (218218)	UL Recognized (E44592), CSA (LR20479) TUV (R95551729)
Prices starting at	\$9.75	\$4.75	\$29.50

Sperifioation	78 Scries	1782 Series	75 Series
Coil Voltages	110/120VAC, 220VAC, 12VAC, 12VDC, 24VAC, 24VDC	120VAC, 240VAC, 12VAC, 12VDC, 24VAC, 24VDC	120VAC, 240VAC, 12VAC, 12VDC, 24VAC, 24VDC
Configuration	SPDT, DPDT, 3PDT, 4PDT	4PDT	DPDT, 3PDT
Contact Rating	12 to 15A	3A, 5A	12 A
Base Socket	5, 8,11 or 14 pin spade terminal	14 pin spade terminal	11 pin
Agency Approvals	UL Recognized (E191059), CE, CSA 244610 (See specifications for additional information)	UL Recognized (E344123), cULus when used with 782-4C-SKT socket, CSA, CE, RoHS	UL Recognized file E191059, CE, CSA Certified 244610
Prices starting at	\$4.50	\$25.50	\$7.25

Sperification	1750 Series	755 Scrics	AD-PR Series
Coil Voltages	120VAC, 240VAC, 12VAC, 12VDC, 24VAC, 24VDC	120VAC, 240VAC, 24VDC	120VAC, 240VAC, 12VDC, 24VAC, 24VDC
Configuration	DPDT or 3PDT	DPDT	SPDT, DPST, DPDT
Contact Rating	12A	16A	40A
Base Socket	8-pin or 11-pin spade terminal,	1-pin octal base	Panel mount
Agency Approvals	UL Recognized (E344123), cULus when used with 750 sockets, RoHS	UL Recognized file E43641, CSA 244610 (See specifications for additional information)	UL Recognized E191059, CE Certified (96671869811), CSA Certified 244610, RoHS
Prices starting at	\$34.75	\$9.25	\$14.75

QL Series Electromechanical Relay Selection Guide

QL series relays are general purpose relays designed for a wide range of applications, from power to sequence controls in various factory machines and control panels. They are ideal for electric control panels requiring stable and reliable relays.

Features

- Small package design
- ARC Barrier equipped
- Silver Cadmium Oxide contact
- High dielectric strength (1,800 VAC)
- High reliability and long life
- Ultra-high sensitivity with quick response time (25 ms max.)
- High vibration and shock resistance
- LED indicator on all models, so you can easily see if relay is working properly without using a voltmeter
- Diode protection available on 24 VDC models, which protects contacts and electronic components from back EMF
- UL recognized, CE certified, CSA approval pending
- DPDT and 4PDT models
- ORDER SOCKET SEPARATELY

QL Series Selection Guide								
Part Number	Price	Coil Voltage	Configuration	Contact Rating	$\begin{aligned} & \text { Dimensions } \\ & \text { (see page } \\ & \text { 24-7) } \end{aligned}$	Relay Socket Part Number	Price	$\begin{aligned} & \text { Dimensions } \\ & \text { (see page } \\ & 24-13 \text {) } \end{aligned}$
QL2N1-A120	\$9.75	10120	2PDT	10A	Figure 1	SQL08D	\$4.00	Figure 3
QL4N1-A120	\$11.50	,	4PDT	10A	Figure 2	SQL14D	\$4.50	Figure 4
QL2N1-A220	\$9.75	VAC	2PDT	10A	Figure 1	SQL08D	\$4.00	Figure 3
QL4N1-A220	\$11.00	,	4PDT	10A	Figure 2	SQL14D	\$4.50	Figure 4
QL2N1-D24	\$9.75		2PDT	10A	Figure 1	SQL08D	\$4.00	Figure 3
QL2X1-D24	\$11.50	24VDC	2PDT	10A	Figure 1	SQL08D	\$4.00	Figure 3
QL4N1-D24	\$11.00	24VC	4PDT	10A	Figure 2	SQL14D	\$4.50	Figure 4
QL4X1-D24	\$15.00		4PDT	10A	Figure 2	SQL14D	\$4.50	Figure 4

QL Series Electromechanical Relay Specifications

QL Series Specification Table								
Part Numbers				$\begin{aligned} & \text { N్ } \\ & \text { N } \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { I } \\ & \vdots \\ & \dot{N} \\ & \text { I } \\ & \text { In } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \underset{1}{\prime} \\ & \text { İ } \\ & \text { In } \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \text { 1 } \\ & \dot{B} \\ & \underset{Z}{2} \end{aligned}$	
Contact Specifications								
Current Rating	10A							
Contact Type	DPDT		4PDT		DPDT		4PDT	
Terminal Type	Spade Plug-In Socket							
Rated Max. Resistive Load	10A@110VAC/10A@24VDC							
Rated Max. Inductive Load	7.5A@110VAC/ 5A@24VDC							
Minimum Recommended Load	1mA @ 5VDC							
Max. Switching Cap. (Resistive Load)	1,100VAC/240W							
Max. Switching Cap. (Inductive Load)	825VAC/120W							
Max. Contact Rating	250VAC/125VDC							
Coil Specifications								
Options	LED Indicator					$\begin{aligned} & \text { Indicator/Diode } \\ & \text { Protection } \end{aligned}$	LED Indicator	$\begin{gathered} \text { LED } \\ \text { Indicator/Diode } \\ \text { Protection } \end{gathered}$
Coil Input Voltage	110/120VAC	220/240VAC	110/120VAC	220/240VAC	24VDC			
Rated Current at 50Hz	$9.9 / 10.8 \mathrm{~mA}$	6.2/6.8mA	17/19mA	11.5/13.1mA	36.9 mA		69 mA	
Rated Current at 60Hz	8.4/9.2mA	5.3/5.8mA	18/16.4mA	$9.8 / 11.2 \mathrm{~mA}$	36.9 mA		69 mA	
Coil Resistance	$4.43 \mathrm{k} \Omega$	$12.95 \mathrm{k} \Omega$	$2.2 \mathrm{k} \Omega$	$6.7 \mathrm{k} \Omega$	650Ω		350Ω	
Power Consumption	Approx. 0.9W to 1.1W (at 60Hz)				Approx. 0.9W			
Dropout Voltage (\% of rated voltage)	Min. 30\%				Min. 10\%			
Pick-Up Voltage (Must operate voltage)	Max. 80\% of the rated coil voltage							
Max. Voltage (Max. continuous voltage)	110\% of the rated coil voltage							
Min. Operating Voltage	80\% of the rated coil voltage							
General Specifications								
Service Life	Mechanical: AC: Min. 50 million operations; DC: Min. 100 million operations (at operating frequency of 18,000 operations/hour)							
	Electrical: DPDT: Min. 500k operations; 4PDT: Min. 200k operations (at operating frequency of 1,800 operations/hour)							
Operate Time	25 ms max							
Release Time	25 ms max							
Ambient Temperature	$-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$							
Ambient Humidity	45\% to 85\% Relative Humidity							
Contact Material	Silver Cadmium Oxide							
Contact Resistance	$50 \mathrm{~m} \Omega$ max.							
Operating Frequency	Mechanical 18,000 operations/hour; Electrical 1,800 operations/hour							
Vibration Resistance	10 Hz to 55 Hz at double amplitude of 1.0 mm							
Shock Resistance	1,000m/s ${ }^{\text {2 }}$ (approx. 100G)							
Weight	35 g (1.240z.)							
Agency Approvals and Standards	UL Recognized (\#E222847), CE Certified (9667186-9811), CSA Certified (218218)							

QL Series Wiring Diagrams and Derating Curves

Wiring Diagrams

QL2N1-A120

QL2N1-A220

QL4N1-A120
QL4N1-A220

Derating Curves

2PDT
Max. Switching capacity

QL 2PDT

QL2N1-D24

QL4N1-D24

QL2X1-D24

QL4X1-D24

4PDT
Max. Switching capacity

QL 4PDT

QL Series Dimensional Drawings

Dimensions

mm [inches]
Figure 1
QL2

Figure 2
QL4

QM Series Electromechanical Relay Selection Guide

QM series relays are general purpose relays designed for a wide range of applications, from power to sequence controls in various factory machines and control panels. They are ideal for electric control panels requiring stable and reliable relays.

Features

- Small package design
- DPDT has a fine silver contact with 5A capability
- 4PDT has a gold-plated silver contact with 3A capability
- High dielectric strength (1,800 VAC)
- High reliability and long life
- Ultra-high sensitivity with quick response time (20 ms max.)
- High vibration and shock resistance
- ORDER SOCKET SEPARATELY
- LED indicator on all models, so you can easily see if relay is working properly without using a voltmeter
- Diode protection on some 24 VDC models protects contacts and electronic components from back EMF
- UL recognnized, CE certified, CSA certified (218218)

QM Series Selection Guide

Part Number	Price	Coil Voltage	Configuration	Contact Rating	$\begin{aligned} & \text { Dimensions } \\ & \text { (see page } \\ & 24-11) \end{aligned}$	Relay Socket Part Number	Price	Dimensions (see page $24-13)$
QM2N1-A120	\$4.75	110/120VAC	2PDT	5A	Figure 1	SQM08D	\$3.25	Figure 5
QM4N1-A120	\$4.75		4PDT	3 A	Figure 2	SQM14D	\$3.25	Figure 6
QM2N1-A220	\$4.75	220VAC	2PDT	5A	Figure 1	SQM08D	\$3.25	Figure 5
QM4N1-A220	\$8.00		4PDT	3 A	Figure 2	SQM14D	\$3.25	Figure 6
QM2N1-D24	\$4.75	24VDC	2PDT	5A	Figure 1	SQM08D	\$3.25	Figure 5
QM2X1-D24	\$9.00		2PDT	5A	Figure 1	SQM08D	\$3.25	Figure 5
QM4N1-D24	\$4.75		4PDT	3 A	Figure 2	SQM14D	\$3.25	Figure 6
QM4X1-D24	\$9.00		4PDT	3 A	Figure 2	SQM14D	\$3.25	Figure 6

Company Information

QM Series Electromechanical Relay Specifications

QM Series Specification Table								
Part Numbers	$\begin{aligned} & \stackrel{N}{N} \\ & \frac{1}{4} \\ & \frac{1}{N} \\ & \underset{S}{2} \end{aligned}$	$\stackrel{\rightharpoonup}{N}$ 	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \frac{1}{4} \\ & \frac{1}{4} \\ & \hline \mathbf{I} \end{aligned}$	N N 1 in B	$\begin{aligned} & \text { Z } \\ & \text { N } \\ & \text { N } \\ & \text { N } \\ & \text { İ } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { N } \\ & \text { N } \\ & \text { N } \\ & \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { N } \\ & \vdots \\ & \vdots \\ & \text { İ } \\ & \hline \end{aligned}$	I O \vdots \vdots \vdots I
Contact Specifications								
Current Rating	5A		3A		5A		3 A	
Contact Type	DPDT		4PDT		DPDT		4PDT	
Terminal Type	Spade plug-in socket							
Rated Max. Resistive Load	5A @ 220VAC/5A @ 24VDC		3 A @ 220VAC/3A @ 24VDC		5A @ 220VAC/5A @ 24VDC		3A @ 220VAC/3A @ 24VDC	
Rated Max. Inductive Load	2A @ 220VAC/2A @ 24VDC		1.5A @ 22VVAC/0.8A @ 24VDC		2A @ 220VAC/2A @ 24VDC		1.5A @ 220VAC/0.8A @ 24VDC	
Minimum Recommended Load	1mA@1VDC							
Max. Switching Cap. (Resistive Load)	1,100VA/120W		660VA/72W		1,100VA/120W		660VA/72W	
Max. Switching Cap. (Inductive Load)	440VA/48W		176VA/36W		440VA/48W		176VA/36W	
Max. Contact Rating	250VAC/125VDC				250VAC/125VDC			
Coil Specifications								
Options	LED Indicator					$\begin{aligned} & \text { LED } \\ & \text { ndicator/Diode } \\ & \text { Protection } \end{aligned}$	LED Indicator	$\begin{gathered} \text { LED } \\ \begin{array}{c} \text { Indicator/Diode } \\ \text { Protection } \end{array} \\ \hline \end{gathered}$
Coil Input Voltage	110/120VAC	220/240VAC	110/120VAC	220/240VAC	24VDC			
Rated Current at 50Hz	$9.9 / 10.8 \mathrm{~mA}$	6.2/6.8mA	9.9/10.8mA	$6.2 / 6.8 \mathrm{~mA}$	36.9 mA			
Rated Current at 60Hz	8.4/9.2mA	$5.3 / 5.8 \mathrm{~mA}$	8.4/9.2mA	5.3/5.8mA				
Coil Resistance	$4.43 \mathrm{k} \Omega$	$12.95 \mathrm{k} \Omega$	$4.43 \mathrm{k} \Omega$	$12.95 \mathrm{k} \Omega$	650Ω			
Power Consumption	Approx. 0.9W to 1.1W (at 60Hz)				Approx. 0.9 W			
Dropout Voltage (\% of rated voltage)	Min. 30\%					Min.	10\%	
Pick-Up Voltage (Must operate voltage)	Max. 80% of the rated coil voltage							
Max. Voltage (Max. continuous voltage)	110\% of the rated coil voltage							
Min. Operating Voltage	80\% of the rated coil voltage							
General Specifications								
Service Life	Mechanical: AC: Min. 50 million operations; DC: Min. 100 million operations (at operating frequency of 18,000 operations/hour)							
	Electrical: DPDT: Min. 500k operations; 4PDT: Min. 200k operations (at operating frequency of 1,800 operations/hour)							
Operate Time	20 ms max							
Release Time	20 ms max							
Ambient Temperature	$-25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.167^{\circ} \mathrm{F}\right)$							
Ambient Humidity	45\% RH to 85\% RH							
Contact Material	Fine Silver		Gold-plated Silver		Fine Silver		Gold-plated Silver	
Contact Resistance	$50 \mathrm{~m} \Omega$ max							
Operating Frequency	Mechanical: 18,000 operations/hour; Electrical: 1,800 operations/hour							
Vibration Resistance	10 Hz to 55 Hz at double amplitude of 1.0 mm							
Shock Resistance	1,000m/s ${ }^{2}$ (approx. 100G)							
Weight	35 g (1.240z.)							
Agency Approvals and Standards	UL Recognized (\#E222847), CE Certified (9667186-9811), CSA Certified (218218)							

QM Series Wiring Diagrams and Derating Curves

Wiring diagrams

QM4N1-A120

QM2N1-D24

QM4N1-D24

Derating curves
DPDT
Max. Switching capacity

QM DPDT

QM2X1-D24

QM4X1-D24

4PDT
Max. Switching capacity

QM 4PDT

QM Series Dimensional Drawings

Dimensions
mm [inches]

Figure 1 QM2 Series

Figure 2
QM4 Series

Sockets for QL/QM Series Relays

SQL08D

Din-rail mounting, DPDT, for use with QL2 series relays
$\$ 4.00$

SQL14D

Din-rail mounting, 4PDT, for use with QL4 series relays
\$4.50

SQM08D

Din-rail mounting, DPDT, for use with QM2 series relays
\$3.25

SQM14D

Din-rail mounting, 4PDT, for use with QM4 series relays
\$3.25

Holding Clips

Holding clips for the QL2, QL4, QM2 and QM4 series relays can be removed by pushing the side of the inserting hole with a sharp object.

Note: Order sockets separately; holding clips are included with sockets.

Holding Clip Dimensions mm [in]

Holding clip for QL4 series relays is included with SQL1 4D sockets.

Holding Clip
Dimensions mm [in]

Holding clip for QL2, QM2 and QM4 series relays is included with SQL08D, SQM08D and SQM14D sockets.

Insert holding clip into the slots provided on the socket.

Socket Dimensions for QL/QM Series Relays

Dimensions

mm
Figure 3
SQL08D (for QL2 Series Relays)

Top View
Figure 5
SQM08D (for QM2 Series Relays)

Figure 4
SQL14D (for QL4 Series Relays)

Top View
Figure 6
SQM14D (for QM4 Series Relays)

Top View

RS Series Electromechanical Relay Selection Guide

 and Lights

Stacklights

RS Series Relay Specifications

RS series relays are compact, space-saving relay terminal modules containing four or six card relays with one normally open contact each. These relay-and-terminal modules are ideal for interfacing electronic control devices (such as PLCs or photoelectric sensors) with output devices.
$\frac{\text { RS6 } 6 \text {-DE }}{\text { RS4N-DE }}$
$\$ 39.00$
\$29.50

Features:

- Compact size of 34 mm wide by 69 mm long, including screw terminals
- Input terminals are located in the upper part and output terminals in the lower part of the module to separate them from each other, making wiring easy
- RB105 pluog-in relays and TP04 sockets make maintenance easy
- Built-in coil surge-suppression diodes and operation indicator LEDs simplify circuit design and maintenance
- The module is easily-mounted on a 35 mm DIN rail
- The RS4N module includes two standard accessory jumper plates, which are convenient for common wiring of terminals

RS6N-DE

RS4N-DE and RS6N-DE Series Card Relay Specifications Table

Contact		1 NO / SPST			
Contact Resistance		$30 \mathrm{~m} \Omega$ or less (before use)			
Contact Material		Silver alloy (gold-plated)			
Min. Operating Voltage and Current		$0.1 \mathrm{VDC}, 1 \mathrm{~mA}$			
Rated Thermal Current		5A			
Max. Make/Break Current (Resistive Load)		250VAC, 5A 30VDC, 5A			
Operating Time		10 ms or less at rated voltage			
Release Time		10ms or less at rated voltage			
Insulation Resistance		100M Ω (at 500VDC megger)			
Dielectric Strength	Between Contact and Coil	2000 VAC 1 minute			
	Between Contacts of Same Pole	750VAC 1 minute			
	Between Contacts of Different Pole	2000 VAC 1 minute			
	Between Coils of Different Pole	500VAC 1 minute			
Vibration	Malfunction Durability	10 to 55Hz, 1mm double amplitude			
	Mechanical Durability	10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude			
Shock	Malfunction Durability	$100 \mathrm{~m} / \mathrm{s}^{2}$			
	Mechanical Durability	$1000 \mathrm{~m} / \mathrm{s}^{2}$			
Life Expectancy	Mechanical	20 million operations			
		Voltage	Make Current (A)	Break Current (A)	Operations
	Electrical	220VAC (inductive load) 220VAC (resistive load) 24VDC (inductive load) 24VDC (resistive load)	$\begin{aligned} & 2(\cos \theta=0.7) \\ & 3(\cos \theta=1.0) \\ & 1(\mathrm{~T}=15 \mathrm{~ms}) \\ & 5(\mathrm{~T}=1 \mathrm{~ms} \text { or less }) \end{aligned}$	$\begin{aligned} & 2(\cos \phi=0.3-0.4) \\ & 3(\cos \phi=1.0) \\ & 1(=15 m s) \\ & 5(\mathrm{~T}=1 \mathrm{~ms}) \\ & \text { or less }) \end{aligned}$	$\begin{aligned} & 100,000 \\ & 130,000 \\ & 150,000 \\ & 100,000 \end{aligned}$
Terminal Wire Capacity		Max wire gauge AWG14			
Ambient Temperature		$-25 \text { to }+55^{\circ} \mathrm{C} \text { (no icing) }$			

Electromechanical Relay RB105-DE Specifications

These spare relays are for replacement in RS4N-DE and RS6N-DE relay modules (5 mm). Bifurcated contacts ensure high contact reliability, allowing use in low-level circuits.

RB105-DE
$\$ 27.50$

Features

- Narrow, miniature size and light weight reduces space on the DIN rail
- UL, CSA, CE, and TUV approved
- Low power consumption
- Can be operated with a non-polarity magnet
- Flux-tight construction

RB105-DE

RB105-DE Card Relay Specification Table		
Operating Time		10ms or less at rated voltage
Release Time		10ms or less at rated voltage
Insulation Resistance		100M 2 (at 500VDC megger)
Dielectric Strength		750VAC 1 minute between open contacts 2000VAC 1 minute between contact and coil
Impulse		$4,500 \mathrm{~V}$ or more $1.2 \times 50 \mathrm{\mu s}$ between contact and coil
Electrical Life Expectancy		AC: 100,000 operations at 220VAC 2 A , inductive load 130,000 operations at 220 VAC 3 A , resistive load
		DC: 150,000 operations at 24VDC 1A, inductive load 100,000 operations at 24VDC 5 A, resistive load
Mechanical Life Expectancy		20 million operations
Ambient Temperature		$-25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (no icing)
Thermal Current		5A
Make and Break Current (Resistive Load)		250VAC, 5A 30VDC, 5A
Operating Coil	Rated voltage	24VDC
	Pick-up voltage	70\% of rated coil voltage
	Drop-out voltage	5\% of rated coil voltage
	Power consumption	200 mW
	Coil resistance	2880Ω
Maximum Wire Size		14 AWG (2.5 mm²)

RS Series Relay Remover and Protective Cover

Relay remover, TY3

To remove a relay from the terminal module, use the TY3 relay remover. RS4N-DE and RS6N-DE modules include a TY3 relay remover. Pull the relay in a direction perpendicular to the terminal module surface. Incorrectly removing or mounting a relay may damage the relay pins and pin jacks of the module.

TY3 $\quad \$ 8.00$

Dimensions

mm
Figure 1 RB105-DE

Optional protective cover, RZ4N

A protective cover fits over the RS4N-DE or RS6N-DE module and protects the terminals.

$$
\text { RZ4N } \quad \$ 16.00
$$

Internal wiring diagram

Figure 2 RZ4N (Terminal guard for RS Series)

RS Series Relay Dimensions and Wiring Diagrams

Dimensions

mm

Figure 3 RS4N-DE

Figure 4 RS6N-DE

Wiring diagram
RS4N-DE

DIN 35 mm rail

Jumper - included only with RS4N-DE

Wiring diagram
RS6N-DE
43.5 (Rail height 15)

36 (Rail height 7.5)

Company
Information

78 Series Electromechanical Relay Selection Guide

Specification	781 Series	782 Series	783 Series	784 Series
Coil Voltages	110/120VAC, 220VAC, 12VAC, 12VDC, 24VAC, 24VDC	110/120VAC, 220VAC, 12VAC, 12VDC, 24VAC, 24VDC	110/120VAC, 220VAC, 12VAC, 12VDC, 24VAC, 24VDC	110/420VAC, 220VAC, 12VAC, 12VDC, 24VAC, 24VDC
Configuration	SPDT	DPDT	3PDT	4PDT
Contact Rating	12 to 15A	12 to 15A	12 to 15A	12 to 15A
Base Socket	5 pin spade terminal	8 pin spade terminal	11 pin spade terminal	14 pin spade terminal
Agency Approvals	UL Recognized (E191059), CE, IEC Std 947-4-1 and 947-5-1, CSA 244610	UL Recognized (E191059), CE, IEC Std 947-4-1 and 947-5-1, CSA 244610	$\begin{aligned} & \text { UL Recoanized (E191059), CE, } \\ & \text { IEC Std 947-4-1 and 947-5-1, } \\ & \text { CSA 244610 } \end{aligned}$	UL Recognized (E191059), CE, CSA 244610
Prices starting at	\$4.50	\$5.50	\$5.75	\$7.25

Features

- Small package design
- Silver Cadmium Oxide gold flashed contact
- High open contact dielectric strength (up to 2500 V rms)
- High reliability and long life
- High vibration and shock resistance
- LED indicator on all models, so you can easily see if the relay is working properly without using a voltmeter
- Flaş indicator shows relay status in manual or powered condition
- A pushbutton allows manual operation of the relay without the need for power to the coil
- Lock-Down door, when activated, holds pushbutton and contacts in the "operate" position, allowing circuits to be analyzed.
This feature is not available on $\mathbf{7 8 1}$ series.
- SPDT, DPDT, 3PDT and 4PDT models
- Finger grip cover allows easier removal of relays from sockets than conventional relays
- I.D. tag/write labels for identifying relays in multi-relay circuits

78 Series Relays Selection Guide
NOTE: Not recommended for low current switching. Find contacts' Minimum Switching Requirement on following page. For low current switching, please see the QM4N1 and QM4X1 series.

Part Number	Price	Coil Voltage	Configuration	Dimensions	Relay Socket Part Number	Price	Dimensions
781-1C-12D	\$4.75	12VDC	SPDT	Figure 1	781-1C-SKT	\$4.00	Figure 5
781-1C-12A	\$4.75	12 VAC					
781-1C-24D	\$4.50	24VDC					
781-1C-24A	\$4.75	24 VAC					
781-1C-120A	\$4.75	120VAC					
781-1C-240A	\$5.25	240VAC					
782-2C-12D	\$5.50	12VDC	DPDT	Figure 2	782-2C-SKT	\$4.00	Figure 6
782-2C-12A	\$5.50	12VAC					
782-2C-24D	\$5.50	24VDC					
782-2C-24A	\$5.75	24 VAC					
782-2C-120A	\$5.75	120 VAC					
782-2C-240A	\$6.25	240VAC					
783-3C-12D	\$5.75	12VDC	3PDT	Figure 3	783-3C-SKT	\$4.50	Figure 7
783-3C-12A	\$7.75	12VAC					
783-3C-24D	\$8.25	24VDC					
783-3C-24A	\$8.25	24 VAC					
783-3C-120A	\$8.25	120 VAC					
783-3C-240A	\$8.25	240VAC					
784-4C-12D	\$7.25	12VDC	4PDT	Figure 4	784-4C-SKT-1	\$4.75	Figure 8
784-4C-12A	\$9.50	12VAC					
784-4C-24D	\$7.50	24VDC					
784-4C-24A	\$7.50	24 VAC					
784-4C-120A	\$7.50	120 VAC					
784-4C-240A	\$7.50	240VAC					

Company
Information
Information

78 Series Relay Specification Table												
Part Numbers	$\begin{aligned} & \text { Nิ } \\ & \text { N } \\ & \text { İ } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { N } \\ & \text { N } \\ & \text { No } \end{aligned}$		$\begin{aligned} & \text { I } \\ & \text { N } \\ & \text { İ } \\ & \text { Non } \end{aligned}$			$\begin{aligned} & \text { N్ } \\ & \text { Ñ } \\ & \text { N } \\ & \text { ※. } \end{aligned}$	న్ む ※ ※̈		$\begin{aligned} & \text { 区 } \\ & \text { N } \\ & \text { Nั } \\ & \text { ®̃ } \end{aligned}$		J N N ※̃ -
General Specifications												
*Service Life: Mechanical / Electrical Operations	Mechanical: $10,000,000$ operations unpowered											
	Electrical: 100,000 operations @ rated resistive load											
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$											
Response Time	20 ms											
Ambient Humidity	45\% RH to 85\% RH											
Vibration Resistance	3 G ', 10 to 55 Hz (0.6mm double amplitude)											
Shock Resistance	10 G's											
Weight	29 g (1.02 02)						$36 \mathrm{~g}(1.2702)$					
**Agency Approvals and Standards	UL Recoognized File E191059, CE, CSA											
Environmental Protection	IEC IP40											
NEMA B300 Pilot Duty Rated	Yes											
Coil Specifications												
Standard	LED Indicator											
Coil Input Voltage	12VDC	12VAC	24VDC	24VAC	120 VAC	240VAC	12VDC	12VAC	24VDC	24VAC	120VAC	240 VAC
Coil Resistance	188Ω	46Ω	750Ω	1802	4.43k Ω	15.72k	160Ω	46Ω	650Ω			$15.7 \mathrm{k} \Omega$
Power Consumption	0.7W DC $0.9 V \mathrm{Q}$ @ 6 Hz AC @ $25^{\circ} \mathrm{C}$						0.9W DC 1.2VA@ 60Hz AC @ $25^{\circ} \mathrm{C}$					
Dropout Voltage (\% of nominal voltage or more)	10\%	15\%	Min. 10%	Min. 15\%			10\%	15\%	Min. 10\%	Min. 15\%		
Pull-in Voltage (\% of nominal voltage or less)	80\%	85\%	80\%	85\%			80\%	85\%	80\%	85\%		
Max. Voltage (Max. continuous voltage)	110\% of the rated coil voltage											
Contact Specifications												
Contact Type	SPDT						DPDT					
Contact Material	Silver cadmium oxide, gold flashed											
Minimum Switching Requirement	100mA @ 5VDC											
Max. Contact Rating	Refere to Contact Ratings charts.											
Dielectric Strength Between Contacts	1500 Vms											

*Note: These devices are rated for 1,000 cycles when used in a motor application. (Per Table 45.1, UL 508).
**Note: UL listed when used with sockets 781-1C-SKT, 782-2C-SKT, 783-3C-SKT, 784-4C-SKT, or 784-4C-SKT-1. Current limited to rating of relay or socket, whichever is less.

NEMA Mechanical Switching Ratings and Test Values for AC Control Circuit Contacts											
Contact RatingDesignation	Thermal Continuous Test Current (A)	Maximum AC Current, 50/60 Hz (A)								Voltamperes	
		120 Volts		240 Volts		480 Volts		600 Volts			
		Make	Break	Make	Break	Make	Break	Make	Break	Make	Break
B300	5	30	3.00	15	1.50	--	--	---	--	3600	360

[^0]circuit devices. The chart values are from NEMA Standard ICS 5-2000, Table 1-4-1.

781 Series Gontact Ratings (culrent)				
Resistive			*Motor Load	
Voltage	Nominal	UL	CSA	UL
28VDC	12 A	12 A	12 A	-
120VAC	15 A	15 A	15 A	$1 / 2 \mathrm{HP}$
277VAC	12 A	12 A	12 A	1 Hp

782 Series Gontact Ratings (sulrent)				
Resistive			*Motor Load	
Voltage	Nominal	UL	CSA	UL
$28 V D C$	12 A	12 A	12 A	--
120 VAC	15 A	15 A	15 A	$1 / 2 \mathrm{Hp}$
277 VAC	12 A	12 A	12 A	1 Hp

78 Series Electromechanical Relay Specifications

78 Series Relay Specification Table												
Part Numbers				I N N º 			$\begin{aligned} & \text { N్ } \\ & \stackrel{1}{U} \\ & \stackrel{4}{*} \\ & \hline \end{aligned}$			$\begin{aligned} & \mathbb{N} \\ & \text { U } \\ & \stackrel{4}{4} \\ & \text { N} \end{aligned}$	I N U 士 I	
General Specifications												
*Service Life: Mechanical / Electrical Operations	Mechanical: 10,000,000 operations unpowered											
	200,000 operations @ rated resistive load											
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$											
Response Time	20 ms											
Ambient Humidity	45\% RH to 85\% RH											
Vibration Resistance	3 G ', 10 to 55 Hz (0.6mm double amplitude)											
Shock Resistance	10 G's											
Weight	60 g. (2.12 oz.)						$80 \mathrm{~g}(2.82$ oz)					
**Agency Approvals and Standards	UL Recognized File E191059, CE, CSA											
Environmental Protection	IEC IP40											
NEMA B300 Pilot Duty Rated	Yes											
Coil Specifications												
Standard	LED Indicator											
Coil Input Voltage	12VDC		24VDC	24VAC	120VAC	240VAC	12VDC	12VAC	24VDC	24VAC	120VAC	240VAC
Coil Resistance	100Ω	25.3Ω	400Ω	103ת	$2.77 \mathrm{k} \Omega$	12.1k	96Ω	21.2Ω	388Ω	84.5ת	2.22k Ω	9.12k
Power Consumption	1.5VA @ $60 \mathrm{~Hz} \mathrm{AC} @ 25^{\circ} \mathrm{C}$						1.5VA @ 60 HzAC @ $25^{\circ} \mathrm{C}$					
Dropout Voltage (\% of nominal voltage or more)	10\%	15\%	10\%	15\%			10\%	15\%	Min. 10\%	Min. 15\%		
Pull-in Voltage (\% of nominal voltage or less)	80\%	85\%	80\%	85\%			80\%	85\%	80\%	85\%		
Max. Voltage (Max. continuous voltage)	110% of the rated coil voltage											
Contact Specifications												
Contact Type	3PDT						4PDT					
Contact Material	Silver cadmium oxide, gold flashed											
Minimum Switching Requirement	100mA @ 5VDC											
Max. Contact Rating	Refer to Contact Ratings charts.											
Dielectric Strength Between Contacts	1500 V rms						2500 V rms					

*Note: These devices are rated for 1,000 cycles when used in a motor application. (Per Table 45.1, UL 508).
**Note: UL listed when used with sockets 781-1C-SKT, 782-2C-SKT, 783-3C-SKT, 784-4C-SKT, or 784-4C-SKT-1. Current limited to rating of relay or socket, whichever is less.

Resistive				
Resies Gontact Ratings (current)				
Voltage	Nominal	UL	CSA	
28 VDC	12 A	12 A	12 A	---
120 VAC	15 A	15 A	15 A	$1 / 2 \mathrm{Hp}$
277 VAC	12 A	12 A	12 A	$3 / 4 \mathrm{Hp}$

Resistive				
Series Contact Ratings (current)				
Voltage	Nominal	UL	CSA	UL
28 VDC	12 A	12 A	12 A	---
120 VAC	15 A	15 A	15 A	$1 / 2 \mathrm{Hp}$
277 VAC	12 A	12 A	12 A	$3 / 4 \mathrm{Hp}$

*Note: These devices are rated for 1,000 cycles when applied to a motor application. (Per Table 46.1 UL 508)

78 Series Wiring Diagrams and Dimensions

Wiring Diagrams (viewed from pin end)

ALTERNATE NEMA OR IEC () NUMBERS, VIEWED FROM PIN SIDE

Dimensions

inches [mm]
Figure 1: 781-1C

0.19
$[4.8$

Figure 3: 783-3C

Figure 2: 782-2C

Figure 4: 784-4C

78 Series Relay Socket Dimensions

Dimensions
 inches [mm]

Figure 5: $\mathbf{7 8 1 - 1 \mathrm { C } - \mathrm { SKT }}$
DIN-rail mounting, SPDT, for use with 781 series relays

Note: See Table on next page for maximum screw torques and wire sizes

UL Recognized
file number: E225080

Figure 6: 782-2C-SKT
DIN-rail mounting, DPDT, for use with 782 series and AD-70S2 relays

Note: See Table on next page for maximum screw torques and wire sizes

UL Recognized
file number: E225080

Figure 7: $783-3 C-S K T$
DIN-rail mounting, 3PDT, for use with 783 series relays.

Note: See Table on next page for maximum screw torques and wire sizes

UL Recognized
file number: E225080

Note: Order sockets separately; holding clips are included with sockets.

78 Series Relay Socket Dimensions

Figure 8: 784-4C-SKT-1
DIN-rail mounting, 4PDT,
for use with 784 series relays.
Note: Order sockets separately; holding clips are included with sockets.

Note: See table below for maximum screw torques and wire sizes

Dimensions
inches [mm]

UL Recognized
file number: E225080

Part Number	Price	Maximum Screw Torques	Maximum Wire Sizes
781-1C-SKT	\$4.00	Terminals 13, 14: $7 \mathrm{in}-\mathrm{lbs} / 0.8 \mathrm{Nm}$ Terminals 1, 5, 9: $9 \mathrm{in}-\mathrm{lbs} / 1.0 \mathrm{Nm}$	Terminals 13, 14: 18 to 20 AWG, solid or stranded, one or two identical wires Terminals 1,5,9: 12 to 20 AWG, solid or stranded $\begin{gathered}\text { one or two identical wires }\end{gathered}$
782-2C-SKT	\$4.00	All terminals: $9 \mathrm{in-lbs} / 1.0 \mathrm{Nm}$	All terminals: 12 to 20 AWG, solid or stranded,
783-3C-SKT	\$4.50		
784-4C-SKT-1	\$4.75		

H782 Series Hermetically Sealed Electromechanical Relay Selection Guide

Specification	H782 Series
Coil Voltages	120VAC, 240VAC, 12VAC, 12VDC, 24VAC, 24VDC
Configuration	4 PDT
Contact Rating	3A, 5A
Base Socket	14 pin spade terminal
Agency Approvals	UL Recognized (E344123), cULLus when used with 782-4C-SKT socket, CSA, CE, RoHS
Prices starting at	$\$ 25.50$

These ice cube style relays are designed for applications requiring hermetically sealed units for hazardous factory locations. (Class I, Div. 2 Groups A, B, C, D).

Features

- Hermetically sealed for use in hazardous locations (Class I, Div. 2 Groups A, B, C, D)
- Small package design
- Silver Cadmium Oxide gold flashed contact
- High reliability and long life
- High vibration and shock resistance
- Sealed for washdown conditions
- 4PDT models

H782-4C3-12A
shown

782 Series Hermetically Sealed Relays Selection Guide

Part Number	Price	Coil Voltage	Configuration	Contact Rating	Dimensions	Relay Socket Part Number	Price	Dimensions
H782-4C3-12D	\$35.00	12VDC	4PDT	3 A	Figure 1	782-4C-SKT	\$3.75	Figure 2
H782-4C3-12A	\$25.50	12 VaC						
H782-4C3-24D	\$35.00	24 VDC						
H782-4C3-24A	\$34.75	24 VAC						
H782-4C3-120A	\$40.25	120VAC						
H782-4C3-240A	\$29.00	240 VaC						
H782-4C5-12D	\$35.50	12VDC						
H782-4C5-12A	\$38.50	12 VAC						
H782-4C5-24D	\$35.50	24 VDC						
H782-4C5-24A	\$28.25	24 VAC		5A				
H782-4C5-120A	\$39.75	12 VVAC						
H782-4C5-240A	\$31.00	240 VAC						

H782 Series Hermetically Sealed Electromechanical Relay Specifications

H782 Series Hermetically Sealed Relay Specification Table												
Part Numbers									$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \text { L } \\ & \stackrel{y}{4} \\ & \text { o } \\ & \text { 토 } \end{aligned}$			
General Specifications												
*Service Life: Mechanical / Electrical Operations	Mechanical: 10,000,000 operations unpowered											
	Electrical life:100,000 operations @ rated resistive load											
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (-40 ${ }^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$)											
Response Time	20 ms											
Ambient Humidity	45\% RH to 85\% RH											
Vibration Resistance	3 G 's, 10 to 55 Hz (0.6mm double amplitude)											
Shock Resistance	10 G's											
Weight	45 g (1.59 0z)											
**Agency Approvals and Standards	UL Recognized File E344123, CE, CSA, RoHS											
Environmental Protection	IEC IP67 (Class I, Div. 2 Groups A, B, C, D)											
NEMA B300 Pilot Duty Rated	Yes											
Coil Specifications												
Coil Input Voltage	12VDC	12VAC	24VDC	24VAC	120 VAC	240VAC	12VDC	12VAC	24VDC	24VAC	120VAC	240VAC
Coil Resistance	160Ω	43Ω	650Ω	160Ω	3.9k Ω	$12 \mathrm{k} \Omega$	160Ω	43Ω	650Ω	160Ω	3.9k Ω	$12 \mathrm{k} \Omega$
Power Consumption	0.9W DC; 1.2VA @ 60Hz AC @ 25 ${ }^{\circ} \mathrm{C}$											
Dropout Voltage (\% of nominal voltage or more)	15\% AC, 10\%DC											
Pull-in Voltage (\% of nominal voltage or less)	85\% AC, 80\% DC											
Max. Voltage (Max. continuous voltage)	110\% of the rated coil voltage											
Contact Specifications												
Contact Type	4PDT											
Contact Material	Fine silver, gold flashed						Silver alloy					
Minimum Switching Requirement	10 mA @ 5VDC						100mA @ 5VDC					
Max. Contact Rating	Refer to Contact Ratings charts.											
Dielectric Strength Between Contacts	500 V rms											

*Note: These devices are rated for 1,000 cycles when used in a motor application. (Per Table 45.1, UL 508).
**Note: UL listed when used with socket 782-4C-SKT. Current limited to rating of relay or socket, whichever is less.

782 Series Contact Ratings (culvent)				
Resistive				*Motor Load
Voltage	Nominal	UL	CSA	UL
30VAC	3 A	3A	3A	
120VAC	3 A	3A	3A	$1 / 16 \mathrm{HP}$
240VAC	3 A	3 A	3 A	$1 / 10 \mathrm{HP}$

782 Series Contact Ratings (current)				
Resistive				*Motor Load
Voltage	Nominal	UL	CSA	UL
30 VAC	5 A	5 A	5 A	
120 VAC	5 A	5 A	5 A	
240 VAC	5 A	5 A	5 A	

H782 Series Hermetically Sealed Electromechanical Relay Dimensions

Dimensions

inches [mm]
Figure 1: H782-4C3-xx and H782-4C5-xx

Wiring

Wiring Diagram Bottom View

Socket for H782 Series Hermetically Sealed Electromechanical Relay

Part Number	Price	Maximum Screw Torques	Maximum Wire Sizes
782-4C-SKT	$\$ 3.75$	All terminals: 9 in-lbs/1Nm	All terminals:12 to 20 AWG, solid or stranded, one or two identical wires

Timers
 Pneumatics:
 Air Prep
 Pneumatics: Directional Con
 Directional Valves
 Pneumatics:
 Cylinders
 Pneumatics:
 Tubing
 Pneumatics: Air Fittings

75 Series Electromechanical Relay Selection Guide

75 series relays are general purpose relays designed for a wide range of applications, from power to sequence controls in various factory machines and control panels. They are ideal for electrical control panels requiring stable and reliable relays.

Features

- Octal base design
- Silver Cadmium Oxide, gुold flashed contacts
- High open contact dielectric strength (1,500 V rms)
- High reliability and long life
- High vibration and shock resistance
- Flaģ indicator shows relay status in manual or powered condition
- LED indicator on all models, so you can easily see if relay is working properly without using a voltmeter
- A pushbutton allows manual operation of the relay without the need for power to the coil
- I.D. tag/write label for identifying relays in multi-relay circuits

75 Series Relay Selection Guide							
Part Number	Price	Coil Voltage	Configuration	Contact Rating	Dimensions	Relay Socket Part Number	Price
750-2C-12D	\$7.25	12VDC	DPDT	12A	Figure 1	750-2C-SKT	\$4.25
750-2C-12A	\$8.75	12 VAC					
750-2C-24D	\$8.25	24VDC					
750-2C-24A	\$8.25	24 VAC					
750-2C-120A	\$8.25	120VAC					
750-2C-240A	\$8.50	220VAC					
750-3C-12D	\$8.25	12VDC	3PDT		Figure 2	750-3C-SKT	\$4.75
750-3C-12A	\$10.50	12 VAC					
750-3C-24D	\$9.25	24VDC					
750-3C-24A	\$9.50	24 VAC					
750-3C-120A	\$9.50	120 VAC					
750-3C-240A	\$10.00	240VAC					

Order socket separately.

Dimensions

inches [mm]
Figure 1: 750-2C-xxx

Wiring

750-2C-xxx wiring diagram

Note: Contacts and coil shown are internal to the relay
750-3C-xxx wiring diagram

75 Series Electromechanical Relay Specifications

75 Series Specification Table												
Part Numbers	Na N N N N	$\begin{aligned} & \text { న్ } \\ & \text { d } \\ & \text { Ni } \\ & \text { NN } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \text { L } \\ & \text { Ni } \\ & \text { N } \end{aligned}$	I N N N		J N N ก̄		$\begin{aligned} & \text { N } \\ & \text { L్ల } \\ & \text { స్ } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \text { d } \\ & \text { Nu } \\ & \text { Ni } \end{aligned}$		$\begin{aligned} & \text { I } \\ & \text { N } \\ & \text { L్ల } \\ & \text { స్ } \\ & \hline \end{aligned}$	J N N N N
General Specifications												
Service Life	Mechanical: 5 million operations, Electrical: 100,000 operations @ rated resistive load											
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$											
Response Time	20 ms											
Vibration Resistance	3 G's @ 10 to $55 \mathrm{~Hz}(0.6 \mathrm{~mm}$ double amplitude)											
Shock Resistance	10 G's											
Weight	$89 \mathrm{~g}(3.10 \mathrm{oz})$											
*Agency Approvals and Standards	UL Recognized file E191059, CE, CSA Certified 244610											
Environmental Protection	IEC IP40											
Coil Specifications												
Standard	LED Indicator											
Coil Input Voltage	12VDC	$\begin{aligned} & 12 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	24VDC	$\begin{gathered} \text { 24VAC } \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 120 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 240 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	12VDC	$\begin{gathered} \hline 12 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	24VDC	$\begin{gathered} 24 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & \hline 120 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 240 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
Coil Resistance	120Ω	18Ω	470Ω	72Ω	$1.7 \mathrm{k} \Omega$	$7.2 \mathrm{k} \Omega$	120Ω	18Ω	470Ω	72Ω	$1.7 \mathrm{k} \Omega$	7.2k Ω
Power Consumption	$3 \mathrm{VA}(6 \mathrm{~Hz}) \mathrm{AC}, 1.4 \mathrm{~W}$ DC											
Dropout Voltage (\% of rated voltage)	15\% AC, 10\% DC											
Pull-in Voltage	Max. 85% of nominal voltage or less											
Max. Voltage (Max. continuous voltage)	110\% of the rated coil voltage											
Contact Specifications												
Contact Type	DPDT						3PDT					
Contact Material	Silver cadmium oxide, gold flashed											
Minimum Switching Requirement	100mA @ 5VDC											
Contact Rating	Refer to Contact Ratings chart											
Dielectric Strength Between Contacts	1500 V rms											

H750 Series Hermetically Sealed
 Electromechanical Relay Selection Guide

Specifitoation	H1750 Series
Coil Voltages	120VAC, 24OVAC, 12VAC, 12VDC, 24VAC, 24VDC
Configuration	DPDT or 3PDT
Contact Rating	12A
Base Socket	8-pin or 11-pin spade terminal,
Agency Approvals	UL Recognized (E344123), cULus when used with 750 sockets RoHS
Prices starting at	$\$ 45.00$

H750 series hermetically sealed relays are designed for use in hazardous applications. (Class 1, Div 2, Groups A, B, C, D).

Features

- Hermetically sealed for use in hazardous locations (Class 1, Div 2, Groups A, B, C, D)
- Octal base design
- Silver Cadmium Oxide, gold flashed contacts
- High open contact dielectric strength ($1,500 \mathrm{~V}$ rms)
- High reliability and long life
shown
- High vibration and shock resistance
- DPDT and 3PDT models

H750 Series Hermetically Sealed Relay Selection Guide

Part Number	Price	Coil Voltage	Configuration	Contact Rating	Dimensions	Relay Socket Part Number	Price
H750-2C-12D	\$45.00	12VDC	DPDT	12A	Figure 1	750-2C-SKT	\$4.25
H750-2C-12A	\$34.75	12 VAC					
H750-2C-24D	\$45.00	24VDC					
H750-2C-24A	\$34.75	24 VAC					
H750-2C-120A	\$47.25	120 VAC					
H750-2C-240A	\$40.75	220VAC					
H750-3C-12D	\$35.25	12VDC	3PDT		Figure 2	750-3C-SKT	\$4.75
H750-3C-12A	\$37.00	12 VAC					
H750-3C-24D	\$48.25	24VDC					
H750-3C-24A	\$37.00	24VAC					
H750-3C-120A	\$50.50	120VAC					
H750-3C-240A	\$37.75	240VAC					

Order socket separately.

H750 Series Hermetically Sealed Electromechanical Relay Specifications

H750 Series Hermetically Sealed Relays Specification Table												
Part Numbers	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \\ & \text { ஸ. } \\ & \text { N } \end{aligned}$	N N N N N	D N N N N 토	$\begin{aligned} & \underset{N}{N} \\ & \text { N } \\ & \text { N } \\ & \text { N} \\ & \text { N } \end{aligned}$	⿹ㅣ N N స్ N	J N N N h	Nิ N N N N					J J - ¢ ¢ N
General Specifications												
Service Life	Mechanical: 10 million operations											
	Electrical: 100,000 operations @ rated resistive load											
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$											
Response Time	20 ms											
Vibration Resistance	3 G, 10 to 55 Hz											
Shock Resistance	10 G											
Weight	130 g (4.6 oz)											
*Agency Approvals and Standards	UL Recognized file E344123, CSA 244610, RoHS											
Environmental Protection	IEC IP67 (Class I, Div. 2 Groups A, B, C, D)											
Coil Specifications												
Standard	LED Indicator											
Coil Input Voltage	12VDC	$\begin{gathered} 12 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	24VDC	$\begin{aligned} & 24 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 120 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 240 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	12VDC	$\begin{gathered} 12 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	24VDC	$\begin{gathered} 24 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 120 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 240 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
Coil Resistance	120Ω	18Ω	470Ω	72Ω	$1.7 \mathrm{k} \Omega$	7.2k Ω	120Ω	18Ω	72Ω	470Ω	$1.7 \mathrm{k} \Omega$	7.2k Ω
Power Consumption	$1.2 \mathrm{VA}(60 \mathrm{~Hz}) \mathrm{AC}, 0.9 \mathrm{~W}$ DC						$2 \mathrm{VA}(60 \mathrm{~Hz}) \mathrm{AC}, 1.2 \mathrm{~W} \mathrm{DC}$					
Dropout Voltage (\% of rated voltage)	10\% to 15\%											
Pull-in Voltage	Max. 85% of nominal voltage or less											
Max. Voltage (Max. continuous voltage)	110\% of the rated coil voltage											
Contact Specifications												
Contact Type	DPDT						3PDT					
Contact Material	Silver alloy											
Minimum Switching Requirement	100mA @ 5VDC											
Contact Rating	Refer to Contact Ratings charts											
Dielectric Strength Between Contacts	1500 Vms											

*Note: UL listed when used with sockets 750-2C-SKT, 750-3C-SKT. Current limited to rating of relay or socket, whichever is less.

Resistive				Motor Load
Reries Contact Ratings (current)				
Voltage	Nominal	UL	CSA	UL
28 VDC	12 A	12 A	12 A	---
120 VAC	12 A	12 A	12 A	$1 / 3 \mathrm{Hp}$
240 VAC	12 A	12 A	12 A	$1 / 2 \mathrm{Hp}$

[^1]
H750 Series Hermetically Sealed Electromechanical Relay Specifications

Dimensions

inches [mm]
Figure 1: H750-2C Series
8-pin

Figure 2: H750-3C Series
11-pin

Wiring

H750-2C-xxx wiring diagram

Note: Contacts and coil shown are internal to the relay

H750-3C-xxx wiring diagram

Note: Contacts and coil shown are internal to the relay

75 Series Socket Dimensions

Dimensions

inches [mm]

Figure 3: $\underline{750-2 C-S K T}$

Figure 4: $\mathbf{7 5 0 - 3 C - S K T}$

Wiring

Bus Connector

Part Number	Description	Price
$\mathbf{3 3 - 7 9 6 - 1}$	Coil bus connector used to connect multiple reilas in parallel.. Package includes 5 pairs of bus bars to connect up to 5 relays together.	$\$ 3.25$

755 Series Octal Base Magnetic Latching Relay Selection Guide

Features

- ll-pin octal base (use 750-3C-SKT) installs easily
- 16 amp contact rating handles most control circuit loads
- Permanent maģnet latching mechanism holds last set position

755 Scries Relay Selection Guide						
Part Number	Price	Coil Voltage	Configuration	Contact Rating	Relay Socket Part	Price
755-2C-120A	\$9.50	120 VAC	DPDT	16A	750-3C-SKT	\$4.75
755-2C-240A	\$10.50	240 VAC				
755-2CD-24D	\$9.25	24VDC				

Dimensions

inches [mm]

Uses 11 Pin Octal base (750-3C-SKT, not shown)

Wiring

755 Series

Latch and reset are designed to be impulse activated.
Energizing "Latch" will latch relay. Energize "Reset" to unlatch.

755 Series Octal Base Magnetic Latching Relay Specifications

UL Listed when used with sockets 750-2C-SKT and 750-3C-SKT.
Current limited to rating of relay or socket, whichever is less.

Packaged M.O.V.s and Diodes

Overview

Metal Oxide Varistors (MOV) and Diode circuits are offered as convenient plug-in modules. Plugging a module into the relay socket connects the circuit in parallel with the relay coil. No additional wiring is required.
Modules fit within the maximum dimensions of the relay and socket.

Features

- MOV s protect by shunting potentially damaging electrical spikes away from the relay coil. Ideal for AC and DC applications.
- Diodes protect external drive circuitry from inductive voltages generated when removing coil voltage. Ideal for DC applications. Polarity sensitive.

Application

Many PLC systems control one or more inductive load devices. These inductive loads (devices with a coil) generate transient voltages when they are de-energized with a relay contact. When a relay contact is closed it "bounces", which causes the coil to energize and de-energize until the "bouncing" stops. The transient voltage which is generated is much larger in amplitude than the supply voltage, especially with a DC supply voltage.
When switching a DC-supplied inductive load the full supply voltage is always present when the relay contact opens (or "bounces"). When switching an AC-supplied inductive load, if the voltage is not zero when the relay contact opens, there is energy stored in the inductor that is released when the voltage to the inductor is suddenly removed. This release of energy is what produces transient voltages.

When inductive load devices (motors, motor starters, interposing relays, solenoids, valves, etc.) are controlled with relay contacts, it is recommended that a surge suppression device be connected directly across the coil of the field device. If the inductive device has plug-type connectors, the suppression device can be installed on the terminal block of the relay output.
Metal oxide varistors (MOV) and diodes are devices which provide good surge and transient suppression of AC and DC powered coils.

Protection Device Selection Guide

Part Number	Price	Description	Nominal Input Voltage	Dimensions \& Package	Mating Socket
AD-ASMD-250	\$9.75	Protection diode module for 784 and 75 series relays. Plug-in modules come in package of 5 .	6-250VDC	Figure 1	$\frac{783-3 C-S K T}{784-4 C-S K T-1}$ $\frac{750-2 C-S K T}{750-3 C-S K T}$
AD-ASMM-24	\$8.00	MOV module for 784 and 75 series relays that operate at $24 V A C$ coil voltage. Package includes 5 modules.	24VACNDC		
AD-ASMM-120	\$8.00	MOV module for 784 and 75 series relays that operate at 120 VAC coil voltage. Package includes 5 modules.	120VACNDC		
AD-ASMM-240	\$8.00	MOV module for 784 and 75 series relays that operate at $240 V A C$ coil voltage. Package includes 5 modules.	240VACNDC		
AD-BSMD-250	\$8.00	Protection diode module for 782 series relays. Plug-in modules come in package of 5 .	6-250VDC	Figure 2	782-2C-SKT
AD-BSMM-24	\$8.00	MOV module for 782 series relays that operate at 24 VAC coil voltage. Package includes 5 modules.	24VACNDC		
AD-BSMM-120	\$8.00	MOV module for 782 series relays that operate at 120 VAC coil voltage. Package includes 5 modules.	120VACNDC		
AD-BSMM-240	\$8.00	MOV module for 782 series relays that operate at 240 VAC coil voltage. Package includes 5 modules.	240VACNDC		

Accessory dimensions
inches [mm]

Figure 1

Power Relays

AD-PR40-1C-12D
shown

Features

- High power contacts capable of switching up to 40A
- Open construction
- SPDT, DPST and DPDT models
- Riveted construction for high reliability
- Maximum contact voltage up to 600 V

Power Relay Selection Guide					
Part Number	Price	Coil Voltage	Configuration	Contact Rating	Dimensions
AD-PR40-1C-12D	\$14.75	12VDC			
AD-PR40-1C-24D	\$15.75	24VDC			
AD-PR40-1C-24A	\$18.00	24VAC	SPDT		Figure 1
AD-PR40-1C-120A	\$16.25	120VAC			
AD-PR40-1C-240A	\$18.50	240VAC			
AD-PR40-2A-12D	\$17.50	12VDC			
AD-PR40-2A-24D	\$17.50	24VDC			
AD-PR40-2A-24A	\$17.25	24VAC	DPST	40A	Figure 2
AD-PR40-2A-120A	\$17.25	120VAC			
AD-PR40-2A-240A	\$17.75	240VAC			
AD-PR40-2C-12D	\$19.25	12VDC			
AD-PR40-2C-24D	\$19.75	24VDC			
AD-PR40-2C-24A	\$19.75	24VAC	DPDT		Figure 3
AD-PR40-2C-120A	\$19.50	120VAC			
AD-PR40-2C-240A	\$19.75	240VAC			

AD-PR40-1C-xxxx AD-PR40-2C-xxxx AD-PR40-2A-xxxx
Wiring

Dimensions inches [mm]

Figure 1

Figure 2

Power Relays Specifications

Power Relays Specification Table															
Part Numbers		\|AD-PR40-1C-24D	AD-PR40-1C-24A				$$						$$	5 N \vdots N N 0 0 0	
General Specifications															
Service Life	Mechanical: 1 million operations AC and DC														
	Electrical: 50,000 operations @ 300VAC/100,000 @ 28VDC														
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$														
Response Time	30 ms														
Weight	227g (80z) to 312g (11 oz)														
Agency Approvals and Standards	UL Recognized E191059, CE Certified (9667186-9811), CSA Cerrified 244610, RoHS														
Environmental Protection	Not applicable to open relays														
Pilot Duty	A600														
Terminal Wire	Max 10 AWG														
Terminal Torque	11 to 15 in-lb (1.2 to 1.7 Nm)														
Coil Specifications															
Coil Input Voltage	12VDC	24VDC	$\begin{gathered} 24 \mathrm{VAC} \\ 50 / 60 \\ \mathrm{~Hz} \end{gathered}$	120VAC $50 / 60 \mathrm{~Hz}$	240VAC $50 / 60 \mathrm{~Hz}$	12VDC	24VDC	$\begin{gathered} 24 \mathrm{VAC} \\ 50 / 60 \\ \mathrm{HZ} \end{gathered}$	$\begin{aligned} & 120 \mathrm{VAC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	240VAC $50 / 60 \mathrm{~Hz}$	I2VDC	24VDC	$\begin{gathered} 24 \mathrm{VAC} \\ 50 / 60 \\ \mathrm{~Hz} \end{gathered}$	120VAC 50/60 Hz	240VAC $50 / 60 \mathrm{~Hz}$
Coil Resistance	70Ω	290,	12Ω	290Ω	$1.2 \mathrm{k} \Omega$	70Ω	290』	12Ω	290Ω	1.2k Ω	70Ω	290	12Ω	290』	1.2k Ω
Power Consumption	60Hz, 10VA (AC) , 4.0W DC														
Dropout Voltage (\% of rated voltage)	Min. 10\%														
Pull-in Voltage	Max. 85% of nominal voltage or less AC, Max. 80\% of nominal voltage or less DC														
Max. Voltage (Max. continuous voltage)	110\% of the rated coil voltage														
Contact Specifications															
Contact Type	SPDT					DPST					DPDT				
Contact Material	Silver cadmium oxide, gold flashed														
Contact Rating	40A @ 300VAC or 28VDC; 2HP motor load														
Minimum Switching Requirement	1A@ 5VAC/VDC														
Maximum Switching Voltage	600V @ 5A														
Dielectric Strength Between Contacts	1600 Vms														

Dimensions inches [mm]

AD Series Solid State Relays

AD-SSR210-DC shown

A solid state relay is a relay with isolated input and output, whose functions are achieved by means of using electronic components without the use of moving parts (vs.electromechanical relays).

AD-70S2-04B shown

Operation

Solid state relays (SSR) are similar to electromechanical relays, in that both use a control circuit and a separate circuit for switching the load. When voltage is applied to the input of the SSR, the relay is energized by a light-emitting diode. The light from the diode is beamed into a light sensitive semiconductor which, in the case of zero voltage crossover relays, signals the control circuit to turn on the output of the solid state switch at the next zero voltage crossover.

Solid State Relay Features

Solid state relays have features which electromechanical relays do not, such as:

- Long life
- Shock and vibration resistant
- No gुeneration of RFI, EMI
- No contact bounce
- Arcless switching
- No acoustic noise
- Zero crossing
- IC compatibility
- Immunity to humidity, salt spray and dirt
- UL \# E222847

AD-SSR Features

- AC \& DC input
- AC output
- 10 or 25 amp loads
- Photo isolated zero voltage switching
- 4000 V rms isolation input to output
- Internal RC (snubber) network
- RFI suppression
- Integral safety cover and heatsink
- DIN-rail mounting or panel-mount

AD-70S2 Features

- DC input
- AC output
- Up to 4 amp loads
- Optically isolated
- Quick connect terminal, or panel mount when inserted into DIN-rail mountable socket
*NOTE: See 78 Series Relays Socket dimensions.

Solid State Relay Specifications

Specifications							
Part Number	$\begin{aligned} & \text { U } \\ & 0 \\ & \dot{N} \\ & \text { N } \\ & \text { C } \\ & \dot{N} \end{aligned}$		$\begin{aligned} & \text { U } \\ & \text { N్ } \\ & \text { N } \\ & \text { W్ } \\ & \text { i } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { U్ర } \\ & \text { N } \\ & \text { N } \\ & \text { W్ } \\ & \text { Ci } \\ & \hline \end{aligned}$		$\begin{aligned} & U \\ & \dot{甘} \\ & \text { d } \\ & \text { Nे } \\ & \dot{ } \\ & \hline \end{aligned}$	
Input Characteristics							
Control Voltage Range	3-32 VDC	90-280 VAC	3-32 VDC	90-280 VAC	3-30 VDC		
Typical Input Current	16 mA	12 mA	16 mA	12 mA	1-17 mA		
Must Release Voltage	1 VDC	10 VAC	1 VDC	10 VAC	1.0 VDC		
Reverse Polarity Protection	Yes	N/A	Yes	N/A	No		
Maximum Reverse Control Voltage	N/A				5 VDC		
Power Indicator	Red LED Status Lamp				N/A		
Output Characteristics							
Load Voltage Range	24-280VAC				24-140 VAC	24-280 VAC	8-50 VAC
Rated Load Current	10 A		25 A		4 A	4A	4 A
Maximum Off-State Voltage dv/dt	$200 \mu \mathrm{~s}$		$500 \mu \mathrm{~s}$		$3000 \mathrm{~V} / \mu \mathrm{s}$ Typical		
Minimum Load Current	50 mA		120 mA		75 mA		
Non-Repetitive Surge Current (1 Cycle)	83 A		800 A		60 A Peak Max. @ $25^{\circ} \mathrm{C}$		
Maximum Off State Leakage current (RMS)	10 mA				6 mA		3 mA
Typical On-State Voltage Drop (RMS)	1.25 VAC		1.35 VAC		1.6 VAC		
Maximum I ${ }^{2}$ T for Fusing (A ${ }^{2}$ Sec)	83		3700		N/A		
Maximum Peak Blocking Voltage	N/A				400 V	600 V	200 V
Operating Frequency Range	25 Hz to 70 Hz						
Maximum Turn-On Time	10 ms	40ms	10ms	40ms	8.3 ms		
Maximum Turn-Off Time	10 ms	80 ms	10 ms	80 ms	8.3 ms		
General Characteristics							
Dielectric Strength (Input-to-Output Isolation)	4000 V rms				3000 V rms		
Insulation Resistance	$10^{10} \Omega$ Min.						
Operating Temperature Range	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$				$-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$		
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$				$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		
Weight	12.35 oz. (350 g) approx.				1.40 oz. (40 g) approx.		
Agency Approvals	UL Recognized, CE, CSA						

AD-SSRxxx-xx wiring diagram

AD-70S2-xx wiring diagram

SSR Series Dimensions \& Derating Charts

Dimensions

inches [mm]

Figure 1

AD-SSR Series derating charts

Note: Recommended spacing between multiple SSRs is 0.75 inch.

Figure 2
AD-70S2 Series
AD-70S2 Series derating charts

Pneumatics:
Air Fittings

AD Series Class 6 Solid State Relays

The Class 6 solid state relays offer an energy-efficient alternative to standard electromechanical relays.
Switching types include DC switching for low-voltage DC loads and Zero Cross for resistive AC loads where the output ener-gizes/de-energizes when control voltage is near zero.
Switching devices include: MOSFET for DC loads, Triac and SCR for AC loads.

Features

- Finger-safe "Hockey Puck" housing
- Solid-state circuitry
- High load ratings up to 75 amps
- Input indicating LED
- Optically coupled circuits
- Panel mount
- Thermal pad included with each relay

AD-SSR610-AC-280A shown

Class 6 Solid State Relay Selection Guide						
Part Number	Price	Type	Input Voltage	Load Voltage	Configuration	Contact Rating
AD-SSR610-AC-280A	\$18.25	N.O. SCR	90 to 280 VAC	24 to 280 VAC	SPST	10A
AD-SSR610-DC-280A	\$16.25	N.O. SCR	3 to 32 VDC			
AD-SSR6T10-DC-280A	\$16.25	N.O. TRIAC	3 to 32 VDC			
AD-SSR625-AC-280A	\$23.50	N.O. SCR	90 to 280 VAC			25A
AD-SSR625-DC-280A	\$17.50	N.O. SCR	3 to 32 VDC			
AD-SSR6T25-DC-280A	\$18.50	N.O. TRIAC	3 to 32 VDC			
AD-SSR640-AC-280A	\$25.50	N.O. SCR	90 to 280 VAC			40A
AD-SSR640-DC-280A	\$24.50	N.O. SCR	3 to 32 VDC			
AD-SSR6T40-DC-280A	\$22.75	N.O. TRIAC	3 to 32 VDC			
AD-SSR650-AC-280A	\$29.75	N.O. SCR	90 to 280 VAC			50A
AD-SSR650-DC-280A	\$29.75	N.O. SCR	3 to 32 VDC			
AD-SSR675-AC-280A	\$41.00	N.O. SCR	90 to 280 VAC			75A
AD-SSR675-DC-280A	\$41.00	N.O. SCR	3 to 32 VDC			
AD-SSR6M12-DC-200D	\$17.25	N.O. MOSFET	3.5 to 32 VDC	3 to 200 VDC		12A
AD-SSR6M25-DC-200D	\$40.00	N.O. MOSFET	3.5 to 32 VDC			25A
AD-SSR6M40-DC-200D	\$40.00	N.O. MOSFET	3.5 to 32 VDC			40A
AD-SSR610-AC-480A	\$14.50	N.O. SCR	90 to 280 VAC	48 to 480 VAC		10A
AD-SSR610-DC-480A	\$14.50	N.O. SCR	3 to 32 VDC			
AD-SSR6T10-DC-480A	\$14.50	N.O. TRIAC	3 to 32 VDC			
AD-SSR625-AC-480A	\$18.75	N.O. SCR	90 to 280 VAC			25A
AD-SSR625-DC-480A	\$17.75	N.O. SCR	3 to 32 VDC			
AD-SSR6T25-DC-480A	\$19.00	N.O. TRIAC	3 to 32 VDC			
AD-SSR640-AC-480A	\$32.00	N.O. SCR	90 to 280 VAC			40A
AD-SSR640-DC-480A	\$30.00	N.O. SCR	3 to 32 VDC			
AD-SSR6T40-DC-480A	\$22.75	N.O. TRIAC	3 to 32 VDC			

Note: Thermal pad included with each relay.

AD Series Class 6 Solid State Relays

Specifications													
Part Number	AD-SSR610-AC-280A		AD-SSR6T1O-DC-280A	AD-SSR625-AC-280A		AD-SSR6T25-DC-280A	AD-SSR640-AC-280A		AD-SSR6T4O-DC-280A	AD-SSR650-AC-280A	AD-SSR650-DC-280A	AD-SSR675-AC-280A	AD-SSR675-DC-280A
Input Characteristics													
Control Voltage Range	90 to 280 VAC			90 to 280 VAC			$\begin{aligned} & 90 \text { 90 } 280 \\ & 9 \end{aligned}$			$\begin{aligned} & 90 \text { to } 28080 \\ & \\ & V A C C \end{aligned}$	$\begin{aligned} & 3 \pm 032 \\ & \operatorname{VDCC} \end{aligned}$	$\begin{aligned} & 90 \text { 90 } 28080 \\ & \\ & \text { VAC } \end{aligned}$	$\begin{aligned} & 3 \pm 032 \\ & \operatorname{VDCC} \end{aligned}$
Maximum Input Current	2 mA			2 mA			2 mA			2 mA	10 mA	2 mA	10 mA
Must Release Voltage	10 VAC			10 VAC			10 VAC			10 VAC	1 VDC	10 VAC	1 VDC
Reverse Polarity Protection	-			-			-			-	no	-	no
Switching Type	Zero Cross												
Power Indicator	Green LED status lamp												
Output Characteristics													
Load Voltage Range	24 to 280 VAC												
Rated Load Current	10 A			25 A			40 A			50 A		75 A	
Maximum Off-State Voltage dv/dt	$500 \mathrm{~V} / \mathrm{s}$												
Minimum Load Current	40 mA			40 mA			40 mA			40 mA	150 mA	40 mA	150 mA
Maximum Non-Repetitive Surge Current (1 Cycle, 16.6 ms), peak	120 A			250 A			625 A					1000 A	
Maximum Off State Leakage current (RMS)	10 mA			10 mA			10 mA			10 mA	1 mA	10 mA	1 mA
Maximum On-State Voltage Drop (RMS)	1.6 V ms												
Maximum I²T for Fusing (${ }^{2}$ Sec)	60			260			1620					4150	
Operating Frequency Range	50 to 60 Hz												
Maximum Turn-On Time	10 ms			10 ms			10 ms			10 ms	8.3 ms	10 ms	8.3 ms
Maximum Turn-Off Time	40 ms			40 ms			40 ms			40 ms	8.3 ms	40 ms	8.3 ms
General Characteristics													
Dielectric Strength (Input-to-Output Isolation)	4000 VAC (ms)												
Thermal Resistance (Junction to Base)	$1.48^{\circ} \mathrm{C} / \mathrm{N}\left(34.66^{\circ} \mathrm{F} / \mathrm{M}\right)$			$1.02^{\circ} \mathrm{C} / \mathrm{W}\left(33.84{ }^{\circ} \mathrm{F} / \mathrm{W}\right)$			$0.63^{\circ} \mathrm{C} / \mathrm{N}\left(33.13^{\circ} \mathrm{F} / \mathrm{M}\right)$					$0.31^{\circ} \mathrm{C} / \mathrm{W}\left(32.56^{\circ} \mathrm{F}\right)$	
Minimum Insulation Resistance @ 500 VDC	$1 \mathrm{E}+9 \Omega$												
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$ derating applies												
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.257^{\circ} \mathrm{F}\right)$												
Weight	$86.5 \mathrm{~g}(3.0502)$												
Terminal Size	Max 10AWG without ring or fork connectors.												
Terminal Torque	Input terminals: 10 lb -in. Output terminals: 20 lb -in												
Terminal Wire Capacity	Inputs up to 12AWG/Outputs up to 8AWG. For anything larger, fork or ring terminals are recommended.												
Agency Approvals and Standards	UL file \# E222847 CE, CSA, RoHS												

AD Series Class 6 Solid State Relays

Specifications											
Part Number	AD-SSR6M12-DC-200D	AD-SSR6M25-DC-200D		AD-SSR610-AC-480A	AD-SSR610-DC-480A	AD-SSR6T10-DC-480A				AD-SSR640-DC-480A	AD-SSR6T40-DC-480A
Input Characteristics											
Control Voltage Range	3.5 to 32 VDC			$\begin{gathered} 90 \text { to } 280 \\ \text { VAC } \end{gathered}$	3 to 32 VDC		$\begin{array}{\|c\|} 90 \text { to } 280 \\ \text { VAC } \end{array}$	3 to 32 VDC	$\left\lvert\, \begin{gathered} 90 \text { to } 280 \\ \text { VAC } \end{gathered}\right.$	3 to 32 VDC	
Maximum Input Current	10 mA			4 mA	15 mA		4 mA	15 mA	4 mA	15 mA	
Must Release Voltage	1 VDC			10 VAC	1 VDC		10 VAC	1 VDC	10 VAC	1 VDC	
Reverse Polarity Protection	no			-	no		-	no	-	no	
Switching Type	DC			Zero Cross							
Power Indicator	Green LED status lamp										
Output Characteristics											
Load Voltage Range	3 to 200 VDC			48 to 480 VAC							
Rated Load Current	12 A	25 A	40 A	10 A			25 A		40 A		
Maximum Off-State Voltage dv/dt	-			$500 \mathrm{~V} / \mathrm{\mu s}$							
Minimum Load Current	-			40 mA	150 mA		40 mA	150 mA	40 mA	150 mA	
Maximum Non-Repetitive Surge Current (1 Cycle, 16.6 ms), peak	27 A	50 A	90 A	140 A			250 A		625 A		
Maximum Off State Leakage current (RMS)	$<1 \mathrm{~mA}$			10 mA	1 mA		10 mA	1 mA	10 mA	1 mA	
Typical On-State Voltage Drop (RMS)	2.8 VDC			1.7 V rms	1.6 V rms		1.7 V rms	1.6 V rms	1.7 V rms	1.6 V rms	
Maximum I ${ }^{2}$ T for Fusing (${ }^{2}$ Sec)	-			81			260		1620		
Operating Frequency Range	-			50 to 60 Hz							
Maximum Turn-On Time	$300 \mu \mathrm{~s}$			10 ms	8.3 ms		10 ms	8.3 ms	10 ms	8.3 ms	
Maximum Turn-Off Time	1 ms			40 ms	8.3 ms		40 ms	8.3 ms	40 ms	8.3 ms	
General Characteristics											
Dielectric Strength (Input-to-Output Isolation)	2500 VAC (rms)			4000 VAC (rms)							
Thermal Resistance (Junction to Base)	$1.06^{\circ} \mathrm{C} / \mathrm{W}\left(33.90^{\circ} \mathrm{F} / \mathrm{W}\right)$			$1.48^{\circ} \mathrm{C} / \mathrm{W}\left(34.66^{\circ} \mathrm{F} / \mathrm{W}\right)$			$1.02^{\circ} \mathrm{C} / \mathrm{W}\left(33.84^{\circ} \mathrm{F} / \mathrm{W}\right)$		$0.63{ }^{\circ} \mathrm{C} / \mathrm{W}\left(33.13^{\circ} \mathrm{F} / \mathrm{W}\right)$		
Minimum Insulation Resistance @ 500 VDC	$1^{E}+9 \Omega$										
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$ (derating applies)										
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.212^{\circ} \mathrm{F}\right)$			$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.257^{\circ} \mathrm{F}\right)$							
Weight	$110 \mathrm{~g}(3.88 \mathrm{oz})$			86.5 g (3.05 0z)							
Terminal Size	Max 10AWG without ring or fork connectors.										
Terminal Torque	Input terminals: 10 lb -in. Output terminals: 20 lb -in										
Terminal Wire Capacity	Inputs up to 12AWG/Outputs up to 8AWG, For anything larger, fork or ring terminals are recommended.										
Agency Approvals and Standards	UL file \# E2२2847, CE, CSA, RoHS										

AD Series Class 6 Solid State Relays Dimensions \& Derating Charts

Dimensions inches [mm]

AD-SSR6xx-xC-xxxA

AD-SSR6Mxx-DC-200D

Derating Charts

75 Amp Styles

25 Amp Styles

12 A MOSFET

MAX. AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)

MAX. AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Note: Charts are based on using a thermal transfer medium such as the included thermal pad

AD Series Class 6 Solid State Relays Accessory

Accessory for SSR6 Solid State Relay		
Part Number	Price	Description
AD-SSR-THERM-PAD	$\$ 18.00$	Thermal mounting pad for AD-SSR6 solid state relays ONLY. 10/pk.

Dimensions
inches [mm]

AD Series Class 8 Solid State Relays

AD-SSR810-AC-28Z shown

The Class 8 solid state relays offer energy efficient current switching in a slim housing ideal for space-saving applications.
Switching types include Zero Cross for resistive AC loads where the output energizes/de-energizes when control voltage nears zero, and Random for AC loads where the output switches instantaneously with the actual voltage.
All Class 8 solid state relays use an SCR, which is suited for AC load applications, as the switching device .

Features

- Internal heat sink
- Finger-safe terminals
- DIN and panel mounting
- Optically coupled circuit

Class 8 Solid State Relay Selection Guide						
Part Number	Price	Type	Input Voltage	Load Voltage	Configuration	Contact Rating
AD-SSR810-AC-28Z	\$25.50	N.O. SCR	90 to 280 VAC	24 to 280 VAC	SPST	10A
AD-SSR810-AC-28R	\$27.75					
AD-SSR810-DC-28Z	\$20.25		3 to 32 VDC			
AD-SSR810-DC-28R	\$20.50					
AD-SSR810-DC-28RN	\$21.75	N.C. SCR	3 to 32 VDC			
AD-SSR810-AC-48Z	\$25.50	N.O. SCR	90 to 280 VAC	48 to 480 VAC		
AD-SSR810-AC-48R	\$32.00		goto 280 VAC			
AD-SSR810-DC-48Z	\$20.75		3 to 32 VDC			
AD-SSR810-DC-48R	\$22.75		31032 VCO			
AD-SSR810-AC-60Z	\$32.25		90 to 280 VAC	48 to 600 VAC		
AD-SSR810-AC-60R	\$33.00		9010280 VAC			
AD-SSR810-DC-60Z	\$24.50		3 to 32 VDC			
AD-SSR810-DC-60R	\$24.50					

Stacklights

Pneumatics:

Directional Control
Valves

Pneumatics:
Cylinders

Pneumatics:
Tubing
Pneumatics:
Air Fittings

Appendix
Book 2

Terms and
Conditions

AD Series Class 8 Solid State Relays

Specifications													
Part Number					AD-SSR810-DC-28RN	$\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { UT } \\ & i \\ & \text { } \\ & \text { ¢ } \\ & \text { d } \\ & \text { i } \end{aligned}$			00 0 0 0 0 0 0 0 0 0 0 1	$\begin{aligned} & \text { N } \\ & \text { o } \\ & \text { S } \\ & \text { io } \\ & \text { ¢ } \\ & \text { i } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { ¢ } \\ & \text { i } \\ & 0 \\ & \hline \end{aligned}$	" 0 0 0 0 0 0 0 0 0 1
Input Characteristics													
Control Voltage Range	90 to 280 VAC		3 to 32 VDC			90 to 280 VAC		3 to 32 VDC		90 to 280 VAC		3 to 32 VDC	
Typical Input Current	12 mA		16 mA			12 mA		16 mA		12 mA		16 mA	
Must Release Voltage	10 VAC		1 VDC			10 VAC		1 VDC		10 VAC		1 VDC	
Reverse Polarity Protection	-		Yes			-		Yes		-		Yes	
Switching Type	$\begin{aligned} & \text { Zero } \\ & \text { Cross } \end{aligned}$	Random	$\begin{aligned} & \text { Zero } \\ & \text { Cross } \end{aligned}$	Random	Random	$\begin{aligned} & \text { Zero } \\ & \text { Cross } \end{aligned}$	Random	$\begin{aligned} & \text { Zero } \\ & \text { Cross } \end{aligned}$	Random	$\begin{aligned} & \text { Zero } \\ & \text { Cross } \end{aligned}$	Random	$\begin{aligned} & \text { Zero } \\ & \text { Cross } \end{aligned}$	Random
Input Indicator	Green LED status lamp												
Output Characteristics													
Load Voltage Range	24 to 280 VAC					48 to 480 VAC				48 to 600 VAC			
Rated Load Current	10 A												
Maximum Off-State Voltage dv/dt	$500 \mathrm{~V} / \mathrm{s}$				$200 \mathrm{~V} / \mathrm{s}$	$350 \mathrm{~V} / \mathrm{\mu s}$							
Minimum Load Current	50 mA												
Non-Repetitive Surge Current (1 Cycle)	500 A												
Maximum Off State Leakage current (RMS)	10 mA												
Typical On-State Voltage Drop (RMS)	1.25 VAC												
Maximum I2T for Fusing (A ${ }^{2}$ Sec)	1250					850				600			
RMS Overload Current/Sec	24A												
Contact Configuration	SPST N.O.				SPST N.C.	SPST N.O.							
Maximum Turn-On Time	40 ms		8.3 ms			40 ms		8.3 ms		40 ms		8.3 ms	
Maximum Turn-Off Time	80 ms		8.3 ms			80 ms		8.3 ms		80 ms		8.3 ms	
General Characteristics													
Dielectric Strength (Terminal to Chassis)	2500 VAC												
Thermal Resistance (Junction to Case)	$0.66^{\circ} \mathrm{CN}$ (33.19 $\left.{ }^{\circ} \mathrm{F} / \mathrm{N}\right)$												
Internal Heat Sink	$4^{\circ} \mathrm{C} / \mathrm{W}\left(39.2^{\circ} \mathrm{F}\right.$ M)												
Operating Temperature Range	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$												
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.212^{\circ} \mathrm{F}\right)$												
Weight	$127 \mathrm{~g}(4.10 \mathrm{oz})$												
Terminal Torque	$7.1 \mathrm{lb-in}(0.8 \mathrm{Nm})$ max												
Terminal Wire Capacity	14 AWG (2.5mm²) max												
Agency Approvals and Standards	UL file \# E222847, CE, CSA, RoHS												
Environmental Protection	IP20												

AD Series Class 8 Solid State Relays Dimensions \& Derating Charts

Wiring Diagram
Derating Chart

* Indicates current cut-off.

Note: A minimum spacing of 17.5 mm (0.7 in) between adjacent 861 relays is required in order to achieve the maximum ratings. A 0 mm spacing will result in a 50% reduction in the de-rating.

Relays and
Timers

Pneumatics: Air Prep

Pneumatics:
Directional Control
Valves
Pneumatics:
Cylinders

Pneumatics:
Pneuma
Tubing
Pneumatics:
Air Fittings
Appendix
Book 2

Terms and Conditions

AD Series Class 8 Solid State Relays for Hazardous Locations

The Class 8 Hazardous Location series is similar to the Class 8 series with the added feature of being approved for hazardous locations (Class 1, Div. 2, Groups A, B, C, D).

Switching types include DC switching for DC loads and Zero Cross for resistive AC loads where the output energizes/de-energizes when the control voltage nears zero. Switching devices include MOSFET for DC loads and SCR for AC loads.

Features

- For use in hazardous locations (Class I, Div 2, Groups A, B, C, D)
- Internal Heat Sink
- Finger-safe terminals
- DIN and panel mounting
- Optically coupled circuit

AD-HSSR808-DC-15 shown

Class 8 Hermetioally-sealed Solid State Relay Selection Guide						
Part Number	Price	Type	Input Voltage	Load Voltage	Configuration	Contact Rating
AD-HSSR815-DC-05	\$56.75	N.O. MOSFET	3.5 to 32 VDC	3 to 50 VDC	SPST	15A
AD-HSSR808-DC-15	\$55.25			3 to 150 VDC		8A
AD-HSSR810-AC-28	\$56.00	N.O. SCR	90 to 280 VAC	24 to 280 VAC		
AD-HSSR810-DC-28	\$54.50		3 to 32 VDC			
AD-HSSR810-AC-48	\$41.75		90 to 280 VAC	48 to 480 VAC		
AD-HSSR810-DC-48	\$55.25		3 to 32 VDC			10A
AD-HSSR810-AC-60	\$42.75		90 to 280 VAC	48 to 600 VAC		
AD-HSSR810-DC-60	\$41.75		3 to 32 VDC			

AD Series Class 8 Solid State Relays for Hazardous Locations

Specifications								
Part Number	AD-HSSR815-DC-05	AD-HSSR808-DC-15	AD-HSSR810-AC-28	AD-HSSR810-DC-28	AD-HSSR810-AC-48	AD-HSSR810-DC-48	0 0 0 0 0 0 0 0 0 0 0 0	
Input Characteristics								
Control Voltage Range	3.5 to 32 VDC		90 to 280 VAC	3 to 32 VDC	90 to 280 VAC	3 to 32 VDC	90 to 280 VAC	3 to 32 VDC
Typical Input Current	12 mA		12 mA	16 mA	12 mA	16 mA	12 mA	16 mA
Must Release Voltage	1 VDC		10 VAC	1 VDC	10 VAC	1 VDC	10 VAC	1 VDC
Reverse Polarity Protection	Yes		-	Yes	-	Yes	-	Yes
Nominal Input Impedance	Curent Regulator		16 to $25 \mathrm{k} \Omega$	Current Regulator	16 to $25 \mathrm{k} \Omega$	Current Regulator	16 to $25 \mathrm{k} \Omega$	Current Regulator
Switching Type	DC		Zero Cross					
Input Indicator	Green LED status lamp							
Output Characteristics								
Load Voltage Range	3 to 50 VDC	3 to 150 VDC	24 to 280 VAC		48 to 480 VAC		48 to 600 VAC	
Rated Load Current	15 A	8 A	10 A					
Maximum Off-State Voltage dv/dt	-	-	$500 \mathrm{~V} / \mathrm{s}$		$350 \mathrm{~V} / \mathrm{s}$		$500 \mathrm{~V} / \mathrm{s}$	
Minimum Load Current	20 mA		50 mA					
Non-Repetitive Surge Current (1 Cycle)	50 A	35 A	500 A					
Maximum Off State Leakage current (RMS)	0.25 mA		10 mA					
Typical On-State Voltage Drop (RMS)	N/A		1.25 VAC					
Maximum I²T for Fusing (A²ec)	-	-	1250		850		600	
RMS Overload Current/Sec	24 A	17 A	24 A					
Maximum Turn-On Time	5 ms		8.3 ms					
Maximum Turn-Off Time	5 ms		8.3 ms					
General Characteristics								
Dielectric Strength Terminals to Chassis	2500 V rms							
Thermal Resistance Junction to Case	$\begin{array}{c\|} 1.4^{\circ} \mathrm{C} N \\ \left(34.52^{\circ} \mathrm{F} / \mathrm{N}\right) \end{array}$	$\begin{gathered} 0.5^{\circ} \mathrm{CN} \\ \left(32.9^{\circ} \mathrm{F} / \mathrm{N}\right) \end{gathered}$	$0.66^{\circ} \mathrm{C} / \mathrm{W}\left(33.19^{\circ} \mathrm{F} / \mathrm{N}\right)$					
Internal Heat Sink	$4.0{ }^{\circ} \mathrm{C} / \mathrm{W}\left(39.2^{\circ} \mathrm{F} / \mathrm{W}\right)$							
Operating Temperature Range	-30 to $80^{\circ} \mathrm{C}\left(-22\right.$ to $176^{\circ} \mathrm{F}$) (derating applies)							
Storage Temperature Range	-40 to $100^{\circ} \mathrm{C}\left(-40\right.$ to $212^{\circ} \mathrm{F}$)							
Weight	$127.1 \mathrm{~g}(4.102)$							
Terminal Torque	7.1 in-lb (0.8 Nm) maximum							
Terminal Wire Capacity	14 AWG (2.5mm²) max							
Agency Approvals and Standards	UL file \# E344125, CE, RoHS							
Environmental Protections	IP20 (Class I, Div. 2 Groups A, B, C, D)							

AD Series Class 8 Solid State Relays for Hazardous Locations Dimensions and Derating Charts

Derating Chart

AMBIENT TEMPERATURE $I N{ }^{\circ} \mathrm{C}$
Note: A minimum spacing of 17.5 mm (0.7 in) between adjacent 861 relays is required in order to achieve the maximum ratings. A 0 mm spacing will result in a 50% reduction in the de-rating.

Timers for all Applications

Fuji multi-mode timers with full features

Ease of use: As the time range is adjusted, the corresponding display changes.
Full functionality: Up to four output modes can be selected simply with the turn of a screw. All outputs contain 5A, DPDT relays.
LED indicators

Miniature DIN timers are small and accurate

Small size: Under one inch wide
 Easy operation: A simple dial allows easy setup for the operator.
Accuracy: The timer will perform its timing function with repeatable accuracy of $+/-1 \%$ of the setting.

Koyo digital timers: powerful but easy to use

This full-function timer has all the bells and whistles, including full programmability:
Timing ranges and modes: Seconds to hours time ranges with decimal selection and up and down timing modes accommodate a wide range of applications.
Output modes: Five output modes, from on-delay to one-shot, use a reliable 2A relay to operate the controlled device.
Tamper-proof: Key protection can be set for individual keys to prevent unintentional changes by the operator.

	ST7P Series	MS4S Series	KT-V4S Series
Display	Manual dial Time setting Output LED indicator	Manual dial Time setting Power LED indicator Output LED indicator Output mode setting	4-digit green LED display for time setting 4-Digit red LED display for current time Output LED indicator Programming indicators
Input Power	100-120 VAC or 24 VDC	100-240 VAC or $24 \mathrm{VDC} / \mathrm{AC}$	85-260 VAC or 10-26 VDC
Inputs	Timed signal	Reset signal Start signal Gate signal Timed signal	Start signal Reset signal Timed signal
Outputs	Normally-open DPDT Normally-closed DPDT	Normally-open DPDT Normally-closed DPDT	1 SPDT DC NPN transistor
Contact Rating	3 A @ 240 VAC (resistive load)	5 A @ 250 VAC (resistive load)	Mechanical: 2 A @ 220 VAC Transistor: 100 mA @ 24 VDC
Output Modes	On-delay	On-delay Flicker One shot Off-delay	On-delay Flicker One shot Off-delay Accumulation
Time Ranges	0.4 seconds to 60 minutes	0.05 seconds to 60 hours	0.001 seconds to 999.9 hours
Enclosure Rating	NEMA 1	NEMA 1	IP65- faceplate
Agency Approvals	UL/CSA/CETUV	UL/CSA/CE/TUV	UL/CSA/CE
Price	starting at $\$ 37.00$	starting at \$44.50	starting at $\$ 100.00$

Fuji 1/16 DIN Super Timers

Overview

The MS4S series super timers are $1 / 16$ DIN style timing relays designed for process control, machine tool control, safety control and many other types of applications. The timers are plug-in 8pin or 11-pin surface/DIN-rail mountable with up to four selectable modes of operation and four selectable timing ranges.

Features

MS4SM

- Multi-mode timer with mode indication. On-delay (PO), flicker (FL), one-shot (OS), or signal off-delay (SF)
- 11-pin plug-in with start, reset and gate (interrupt) input signals and a DPDT contact output
- Timing range from 0.05 seconds to 60 hours
- Timer scale with selectable ranges of $0-6,0-12,0-30$ and 0-60
- Timinģ units in selectable ranges of 0.1 s , sec , min and hrs
- Power on LED indicator (green) flickers during timing operation, UP (red) LED is on when normally open contact is closed

MS4SA

- On-delay timer
- 8-pin plug-in with a DPDT contact output
- Timing range from 0.05 seconds to 60 hours
- Timer scale with selectable ranges of $0-6,0-12,0-30$ and 0-60
- Timing units in selectable ranges of 0.1s, sec , min and hrs
- Power on LED indicator (green) flickers during timing operation, UP (red) LED is on when normally open contact is closed

MS4SC

- On-delay timer
- 8-pin pluog-in with a SPDT timed contact output and a SPDT instantaneous contact output
- Timing range from 0.05 seconds to 60 hours
- Timer scale with selectable ranges of 0 -$6,0-12,0-30$ and 0-60
- Timing units in selectable ranges of 0.1s, $\mathrm{sec}, \mathrm{min}$ and hrs
- Power on LED indicator (green) flickers during timing operation, UP (red) LED is on when normally open contact is closed

Product Sclection Mulde				
Part Number	Description	Voltage	Time Range	Price
MS4SM-AP-ADC	Multi-mode timer with selectable timing range from 0.05 s to 60 hours. Input power is $100-240$ VAC. DPDT relay output. 11-pin connection. UL, CSA, TUV approved. Note: Socket mounts must be purchased separately	100-240 VAC	0.05 seconds to 60 hours	\$48.50
MS4SA-AP-ADC	On-delay timer with selectable timing range.from 0.05 s to 60 hours. Input power is $100-240$ VAC. DPDT relay output. 8-pin connection. UL, CSA, TUVV approved. Note: Socket mounts must be purchased separately		0.05 seconds to 60 hours	\$48.50
MS4SC-AP-ADC	On-delay timer with selectable timing range from $0.05 s$ to 60 hours. Input power is $100-240$ VAC. SPDT timed relay output and SPDT instantaneous relay output. 8-pin connection. UL, CSA, TÜV approved		0.05 seconds to 60 hours	\$48.50
MS4SM-CE-ADC	Multi-mode timer with selectable timing range from 0.05 s to 60 hours. Input power is 24 VDC/AC DPDT relay output. 11-pin connection. UL, CSA , TÜV approved. Note: Socket mounts must be purchased separately	24 VDC/AC	0.05 seconds to 60 hours	\$48.50
MS4SA-CE-ADC	On-delay timer with selectable timing range from 0.05 s to 60 hours. Input power is $24 \mathrm{VDC} / \mathrm{AC}$. DPDT relay output. 8-pin connection. UL, CSA, TÜV approved. Note: Socket mounts must be purchased separately		0.05 seconds to 60 hours	\$48.50
MS4SC-CE-ADC	On-delay timer with selectable timing range from 0.05 s to 60 hours. Input power is 24 VDC/AC. SPDT timed relay output and SPDT instantaneous relay output. 8-pin connection. UL, CSA, TÜV approved. Note: Socket mounts must be purchased separately		0.05 seconds to 60 hours	\$44.50
TP411X	DIN rail/surface mount socket for MS4SM series timers. UL, CSA, TÜV approved	N/A	N/A	\$6.50
TP411SBA	Panel mount socket for MS4SM series timers. UL, CSA, TÜV approved, requires PANEL-16*			\$6.50
TP48X	DIN rail/surface mount socket for MS4SA and MS4SC series timers. UL, CSA, TÜV approved			\$6.50
TP48SB	Panel mount socket for MS4SA and MS4SC series timers. UL, CSA, TÜV approved, requires PANEL-16*			\$6.50
PANEL 16	Mounting clip for 1/16th DIN timers and temperature/process controllers, for door (flush) mounting. 5 clips per package			\$11.00

*Panel clips for mounting through a door are optional and must be purchased seperately.

Control

Dimensions (timer and socket assembly) mm [inches]

Fuji 1/16 DIN Super Timers

*When using panel mount sockets TP411SBA and TP48SB, mounting clip PANEL-16 is required and must be purchsed seperately.

Fuji 1/16 DIN Timers Timing and Wiring Diagrams

MS4SM

1. On-delay PO

2. Flicker FL

3. One-shot OS

4. Signal off-delay SF

MS4SA

On-delay

MS4SC

On-delay

- With power off turn the mode selector until PO is displayed.
- When power is on, applying the start signal turns the timed N.O. (normally open) contact on after the set time has elapsed.
- When using a power-on start, pins 2 and 6 (start signal) must be jumpered together
- To make timer output a signal as soon as power is turned on, turn timer dial fully counter-clockwise.
- With power off, turn the mode selector until FL is displayed.
- When power is on, applying the start signal turns the timed contact on and off repeatedly at the set time intervals.
- When using a power-on start, pins 2 and 6 (start signal) must be jumpered together
- With power off, turn the mode selector until OS is displayed
- When power is on, applying the start signal instantly turns the timed N.O. contact on and turns it off after the set time has elapsed.
- With power off, turn the mode selector until SF is displayed.
- When power is on, applying the start signal instantly turns the timed N.O. contact on. Removing the start signal turns the contact off after the set time has elapsed.

Notes:

1. $T=$ set time. $t=$ time period within set time.
2. The gate signal is used to interrupt the timing operation.

- When power is applied, the timed N.O. contacts make after the set time has elapsed.
- When power is removed, the contacts reset.
- To make timer output a signal as soon as power is turned on, turn timer dial fully counter-clockwise.
- Timed contact

When power is applied, the N.O. contact makes after the set time has elapsed. When power is removed, the contacts reset.

- Instantaneous contact

When power is applied, the N.O. contact makes instantly. When power is removed, the contacts reset.

- To make timer output a signal as soon as power is turned on,

Fuji 1/16 DIN Super Timers Dimensions

Socket for MS4SA, MS4SC (8-pin) TP48X

Socket for MS4SM (11-pin)
TP411X

Socket for MS4SM (11-pin) TP411SBA

Cutout for panel mounting TP48SB and TP411SBA sockets using PANEL-16 mounting clips

Fuji Miniature DIN Super Timers

Overview

The ST7P is a compact and highly accurate timer. It is an on-delay operation type with a single timing range. These timers are designed to optimize mounting space in small areas. Mounting is by DIN rail or by securing directly to a panel with a fastener.

Features

- Highly accurate, with a repeat accuracy
within $\pm 1 \%$ at maximum setting time
- ST7P models offer a number of timing ranges. Please see Selection Guide below
- Large dial makes time setting easy
- LED indicators make it easy to monitor timer operation
- ST7P series meets UL and CSA standards

Product Selection Guide				
Part Number	Description	Voltage	Time Range	Price
ST7P-2A15S-ADC	Mini-DIN on-delay timer with timing range of 0.4 s to 5 s. Input power is $100-120$ VAC. DPDT relay output. UL, CSA, TÜV approved	100-120VAC	0.4 seconds to 5 seconds	\$37.00
ST7P-2A13T-ADC	Mini-DIN on-delay timer with timing range of 2 s to 30 s. Input power is 100-120 VAC. DPDT relay output. UL, CSA, TÜV approved		2 seconds to 30 seconds	\$37.00
ST7P-2A16T-ADC	Mini-DIN on-delay timer with timing range of 4 s to 60 s. Input power is $100-120 \mathrm{VAC}$. DPDT relay output. UL, CSA, TÜV approved		4 seconds to 60 seconds	\$37.00
ST7P-2A11N-ADC	Mini-DIN on-delay timer with thing range of 1 min. to 10 min. Input power is 100-120 VAC. DPDT relay output. UL, CSA, TÜV approved		1 minute to 10 minutes	\$37.00
ST7P-2A16N-ADC	Mini-DIN on-delay timer with thing range of 4 min. to 60 min. Input power is $100-120 \mathrm{VAC}$. DPDT relay output. UL, CSA, TÜV approved		4 minutes to 60 minutes	\$37.00
ST7P-2DE5S-ADC	Mini-DIN on-delay timer with timing range of 0.4 s to 5 s . Input power is 24 VDC . DPDT relay output. UL, CSA, TÜV approved	24VDC	0.4 seconds to 5 seconds	\$37.00
ST7P-2DE3T-ADC	Mini-DIN on-delay timer with timing range of 2 s to 30 s. Input power is 24 VDC . DPDT relay output. UL, CSA, TÜV approved		2 seconds to 30 seconds	\$37.00
ST7P-2DE6T-ADC	Mini-DIN on-delay timer with timing range of 4 s to 60 s . Input power is 24 VDC . DPDT relay output. UL, CSA, TÜV approved		4 seconds to 60 seconds	\$37.00
ST7P-2DE1N-ADC	Mini-DIN on-delay timer with timing range of 1 min. to 10 min. Input power is 24 VDC. DPDT relay output. UL, CSA, TÜV approved		1 minute to 10 minutes	\$36.00
ST7P-2DE6N-ADC	Mini-DIN on-delay timer with timing range of 4 min. to 60 min. Input power is 24 VDC. DPDT relay output. UL, CSA, TÜV approved		4 minutes to 60 minutes	\$36.00
TP88X2	DIN rail/surface mount socket for ST7P series timers. UL, CSA, TÜV approved	N/A	N/A	\$6.50

Control

Dimensions (timer and socket assembly)

Fuji Miniature DIN Super Timer Specifications

Specifications		
Approvals	UL file no.: Body - E44592, Socket - E90265; CSA file no.: LR20479; TÜV license no: R9551799	
Repeat Accuracy	$\pm 01 \%$ at maximum setting time	
Reset Time	0.1 second or less	
Maximum Operating Cycle	1800 cycles/hour	
Operating Voltage Range		
Operating Temperature Range	-10 to $+50^{\circ} \mathrm{C}$ (14 to $122^{\circ} \mathrm{F}$)	
Humidity	35 to 85\% (no condensation)	
Contact Ratings	$3 \mathrm{~A} @ 240 \mathrm{VAC}$ resistive load, 1 A @120 VAC inductive load; $3 \mathrm{~A} @ 30 \mathrm{VDC}$ resistive load, $0.5 \mathrm{~A} @ 30 \mathrm{VDC}$ inductive load	
Power Consumption	Approx. 1.2 VA at 100 VAC , approx. 1.5 VA at $200 \mathrm{VAC}, 1.1 \mathrm{~W}$ at 24 VDC .	
Insulation Resistance	$100 \mathrm{M} \Omega$ at 500 VDC insulation tested	
Surge Voltage*	3000 Volts	
Dielectric Strength	2000 VAC 1 min. between current carrying part and non-current carrying part 2000 VAC 1 min. between output contact and control circuit 1000 VAC 1 min. between open contacts	
Vibration	Malfunction durability: 10 to $55 \mathrm{~Hz}, 0.5 \mathrm{~mm}$ double amplitude Mechanical durability: 10 to $55 \mathrm{~Hz}, 0.7 \mathrm{~mm}$ double amplitude	
Shock	Malfunction durability: $50 \mathrm{~m} / \mathrm{s}^{2}$ Mechanical durability: $1000 \mathrm{~m} / \mathrm{s}^{2}$	
Life Expectancy	Mechanical: 50 million operations (N o load; operation cycle 1800/hr.) Electrical: 500,000 operations (3 A @ 220 VAC, resistive load; operation cycle 1800/hr.)	
Weight	36.288 g (1.28 oz.)	

[^2]
Fuji Miniature DIN Timers, Dimensions, Timing and Wiring

Dimensions - ST7P Timer

Dimensions - TP88X2 Socket

Panel Mounting

Wiring Diagram

Sockets/Screw Terminal and Rail Mounting

Timing Diagram

All dimensions in mm [inches]

Koyo Digital Timers

Overview

Koyo digital timers offer flexible features at a great price. A large, easy to read display is offered in a small $1 / 16$ DIN size. The large, bright red LED display has a 12 mm character display height which allows it to be seen easily from a distance and at an angle. In addition, set values use a green LED display to differentiate from timing values. Basic function settings are made with digital switches. Detailed settings are selected with digital keys, so operation is easy.

Features

- Tamper-proof: key protection can be set for individual keys to prevent a malfunction or tampering
- Battery-less memory retention: EEPROM is used to retain values in memory, so there is no need for battery maintenance
- Maintenance has been reduced via removable terminals. After wiring, the terminal cover provides a safe barrier for worry-free use
- Power source for a DC sensor: you can source the power for the sensor from the built-in power source which supplies 60 mA at 24 VDC
- Wide operating AC voltage range of 85 264 VAC
- Various types of time ranges: covers ten types of time ranges with times of 0.001 second to 999.9 hours
- Five types of operating modes: settings of on-delay, off-delay, one-shot, accumulation and flicker
- Flush door/panel mounting
- Display of elapsed time/remaining time
- IP65 protective structure: front cover panel is made of a clear membrane, so operation with wet or dirty hands can be worry-free
- Fully CE and UL compliant

KT-V4S-C-D

Koyo Digital Timers Specifications

Mencral Sperifipations			
Power		AC Power	DC Power
Part Number		KT-V4S-D	KT-V4S-C-D
Approvals		UL listed, CSA listed	UL recognized only with Class II power supply; CSA: EN61010-1 and EMI: EN55-11, EMS: EN50082-2. If product has DC power supply, an EMI/EMC filter must be installed on the power supply.
Source Voltage		100-240 VAC, 50/60 Hz	12-24 VDC
Permitted Power Fluctuation		85-264 VAC	10-26.4 VDC
Power Consumption		Approx. 11 VA	Approx. 4 W
Sensor Power		24.VDC (20-28 V) 60 mA (less than 10\%p-p ripple noise)	N/A
Memory Backup upon Power Failure		EEPROM writing up to 100,000 times; Memory duration: 10 years	
Ambient Temperature		$-10-50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$	
Storage Temperature		$-20-70^{\circ} \mathrm{C}$ (-4 to $158^{\circ} \mathrm{F}$) (with no icing)	
Ambient Humidity		35-85\% RH non-condensing	
Withstand Voltage		2 kVAC for one minute	
Vibration Resistance		Durability: Displacement amplitude $0.5 \mathrm{~mm} 10-55 \mathrm{~Hz}$ along three axes Operating vibration: Displacement amplitude $0.35 \mathrm{~mm} 10-55 \mathrm{~Hz}$ along three axes	
Impact Resistance		Durability: $490 \mathrm{~m} / \mathrm{s}^{2}$ along three axes Operating impact: $98 \mathrm{~m} / \mathrm{s}^{2}$ along three axes	
Noise Resistance		AC power between terminals $\pm 1.5 \mathrm{kV}$ (pulse width $1 \mu \mathrm{~s}$ and rise time 1ns)	DC power between terminals $\pm 1.0 \mathrm{kV}$ (pulse width $1 \mu \mathrm{~s}$ and rise time 1 ns)
Protective Structure		IP65 (front panel only) when mounted in appropriate enclosure	
Weight		Approx. 150 grams (5.291 oz.)	Approx. 110 grams (3.88 0z.)
Terminals	Conforming wiring	0.25-1.65 mm² 24 to 16 gauge	
	Permitted Torque	0.5 Nm (.369 ft./lbs.)	

Performance Specification

Category	Timer
Operational Format	On-delay, off-delay, one-shot, accumulator, and flicker (with alarm output)
Number of Digits	4 digits
Display	Current values: red LED, character height 12 mm ; Preset value: green LED, character height: 7 mm
Time Range	$0.001 \mathrm{~s}-9.999 \mathrm{~s} / 0.01 \mathrm{~s}-99.99 \mathrm{~s} / 0.1 \mathrm{~s}-999.9 \mathrm{~s} / 1 \mathrm{~s}-9999 \mathrm{~s} / 1 \mathrm{~s}-99 \mathrm{~min} 59 \mathrm{~s} / 1 \mathrm{~min}-9999 \mathrm{~min} / 1 \mathrm{~h}-9999 \mathrm{~h} /$ $1 \mathrm{~min}-99 \mathrm{~h} 59 \mathrm{~min} / 0.1 \mathrm{~min}-999.9 \mathrm{~min} / 0.1 \mathrm{~h}-999.9 \mathrm{~h}$
Display	Elapsed time/remaining time
Timer Precision	0.013% or $\pm 15 \mathrm{~ms}$ (using large values)
Input	Input logic: negative logic (no voltage input) positive logic (voltage input)
	Input resistance: positive logic 15 k ; negative logic $3.3 \mathrm{k} \Omega$ (AC power)/1.8 $\mathrm{k} \Omega$ (DC power)
	Input voltage: "L" 0-3V "H" 7-30 V
Start Input Response	Less than $15 \mathrm{~ms} / 5 \mathrm{~ms} / 1 \mathrm{~ms}$
External Reset	Min. signal amplitude 5 ms
Output	DC output: NPN open collector output/24 V 100 mA . Withstand voltage 35 V . Residual voltage less than 1.5 V
	Relay output: 1 SPDT 220 VAC 2 A (resistive load). $3 \mathrm{~A} @ 30$ VDC, minimum 10mA @ 5 VDC
Output Duration (flicker)	10-9990 ms variable every 10 ms
Installation	1/16 DIN flush door/panel mount

Dimensions mm[inches

Koyo Digital Timers Timing Diagrams

Flicker
(In Son.p mods:

Off-delay

Accumulation

Note: Output duration is variable from 0-9990 ms. (Default: 100 ms)

When alarm settings are 0 , the DC output is the same as the output operations for a relay output.
Note: Alarm settings should be less than preset values. Using alarm settings with values that exceed preset values will result in measurement values of 0 and the alarm output (DC output) will come ON.

KOYO Digital Timers Modes of Operation

ON Delay: The rising edge of the Start signal initiates the Timer. When the Timer reaches the set point, the Relay Output turns ON. The Relay Output stays ON until the falling edge (OFF state) of the Start signal, then the Relay Output turns OFF.

OFF Delay: The falling edge of the Start signal initiates the Timer. When the timer reaches the set point, the Relay Output turns OFF. The Relay Output stays OFF until the rising edge (On state) of the Start signal turns the Relay Output ON.

One Shot: The Start signal works as a one-shot operation. The rising edge of the Start signal initiates the Timer. When the Timer starts timing, the Relay Output turns ON. Once the Timer starts, the Start signal is ignored. The Relay Output stays ON until the Timer reaches the set point, and then it turns OFF.

Accumulation: The rising edge of the Start signal initiates the Timer. The Timer operates as long as the Start signal is ON. When the Start signal turns OFF, the Timer value is held in the accumulator. When the Start signal turns ON again, the Timer continues to operate until it reaches the set point, at which time the Relay Output turns ON.

Flicker: The rising edge of the Start signal initiates the Timer. When the Timer reaches the set point, the Relay Output turns ON for a preset amount of time. The Relay Output continues to toggle ON and OFF at the preset amount of time as long as the Start signal remains ON.

CTT Series - Digital Counter / Timer / Tachometer

Features

- Can operate as a digital counter, timer, combination timer + counter or tachometer
- Accepts voltage and non-voltage inputs from a wide variety of NPN, PNP, or dry contact sensors
- Selectable counting speeds from 1 to 10,000 cycles persecond
- Multiple transistor and relay outputs can operate as momentary or maintained
- Double-line, 6-digit, 2-color LCD display
- Easy configuration with externally accessible DIP switches or the lockable keypad
- Display decimal point selection
- Available in 100-240VAC and 24VDC powered models
- UL508 listed (E311366), cULus, CE marked

A lot of functionality in one powerful little unit!

The CTT series is an extremely versatile multi-function device that is easily configured for operation as a digital counter, timer, combination timer + counter, or tachometer. Both voltage and nonvoltage inputs are accepted from a wide variety of sensor types with NPN, PNP, or dry contact outputs. The first output on the CTT is a single-pole, single-throw
relay and NPN transistor that operate concurrently. The second CTT output can be ordered as either a single-pole, double throw relay or NPN transistor. Parameters are easily set using the externally accessible DIP switches or the lockable keypad. The double-line, 6-digit, two-color LCD display shows the counter, timer, or tachometer present values,
setting values and menu parameters during set-up. Additional individual indicators are provided for inputs, outputs and functions. The standard $1 / 16$ DIN size, with included panel mounting clip and gasket, make panel mounting a snap. The CTT is available in 100 240VAC and 24VDC powered models.

VISIT WWW.AUTOMATIONDIRECT.COM TO DOWNLOAD THE FREE COMPREHENSIVE CTT SERIES MANUAL.

Counter Functions	Counter Input Modes	Counter Output Modes	Oounter/itmer/
1-Stage	Up	Select from eleven (11) different output modes (F, N, C, R, K, P, Q, A, S, T, D)	Tachometer
2-Stage	Down		Functions
Batch	Up / Command Down		
Total	Up/ Down		
Dual	Quadrature		Timer Functions (Up or Down)
	Addition		
	Subtraction		Signal On Delay 1 Repeat Cycle
			Signal On Delay 2 Repeat Cycle Hold
Timer + Counter			Signal Off Delay Repeat Cycle 2
			Signal On Signal Cumulate
Timer Functions (Up or Down)	Counter Input Modes	Counter Output Modes	Power On Delay Signal Twin On-Start
Signal On Delay 1	Up	Select from eight (8) different output modes (F, N, C, R, K, P, Q, A)	Power On Delay Hold Signal Twin Off-Start
Signal On Delay 2	Down		
Signal Off Delay			
Signal On			Tachometer Output Modes
Power On Delay			Select trom four (4) different output modes
Power On Delay Hold			2LO/LLO
Repeat Cycle			2Lo/ $/ \mathrm{Hi}$ 2Hi/Lo
Repeat Cycle Hold			$2 \mathrm{H} / \mathrm{Hi}$

CTT Series - Digital Counter / Timer / Tachometer

Digital Counter / Itimer / Tachometer				
Part Number	Description	Pcs/Pkg	Wt (lb)	Price
CTT-AN-D24		1	0.4	\$69.00
CTT-AN-A120	Counter / Timer / Tachometer, Output 1 NPN \& SPST relay, Output 2 NPN, 100-264 VAC powered, panel mounting clip is included*	1	0.4	\$69.00
CTT-1C-D24	Counter / Timer / Tachometer, Output 1 NPN \& SPST relay, Output 2 SPDT relay, 24 VDC powered, panel	1	0.4	\$69.00
CTT-1C-A120	Counter / Timer / Tachometer, Output 1 NPN \& SPST relay, Output 2 SPDT relay, 100-264 VAC powered, panel	1	0.4	\$69.00

Digital Gounter / Timer / Tachometer General Specifitations

Wiring

CTT Series - Digital Counter / Timer / Tachometer

Display, Indicators \& Keys

LED Display and Indiforators			
RST 1/2	Light on when reset signal is detected	BATCH	"Batch Counting Mode" in Counter
K/P 1/2	Light on when key-protected mode is enabled	SET 12	SV1, SV2 display
OUT 1/2	Light on when output is executing	TAC	Light on in Tachometer function
HMS	Hour, minute, second, unit of timer, displayed in Timer function	CNT	Light on in Counter function
TOTAL	"Total Counting Mode" in Counter function	TMR	Light on in Timer function

CTT Series Dimensions

mm [inches]

CTT Series - Digital Counter / Timer / Tachometer

Counter Performance Specifications	
Counter Functions	1-Stage Counting, 2-Stage Counting, Batch Counting, Total Counting, Dual Counting (See descriptions below)
Input Modes	Counting Up, Counting Down, Counting Up / Command Counting Down, Counting Up / Counting Down, Quadrature, Addition, Subtraction (see descriptions below)
Output Modes	F, N, C, R, K, P, Q, A, S, T, D (For explanation see the manual available at www.AutomationDirect.com)
Timer Precision	Power On start max 0.01\% 0.05 sec. Signal start max 0.01\% 0.03 sec
Start Input Response	Less than 15ms / 5ms / 1ms
External Reset	Minimum reset input signal width 1ms or 20ms (selectable)
Output Duration (flicker)	$10-9990 \mathrm{~ms}$ variable every 10ms
Number of Digits	6 digits on each line
Display	Current values: red LED, character height 8mm; Preset value: green LED character height 6mm

Counter Functions

1-Stage Counting

A single count setting value SV is available in 1-Stage Counting. Both Outputs 1 and 2 operate concurrently and will turn ON momentarily or will be maintained ON depending on the Output Mode selected.

2-Stage Counting

In 2-Stage Counting, count setting value SV1 controls Output 1 and count setting value SV2 controls Output 2. Outputs will turn ON momentarily or will be maintained ON depending on the output mode selected.

Batch Counting

In Batch Counting, count setting value SV controls Output 2 which will turn ON momentarily or will be maintained ON depending on the output mode selected. Count setting value BATCH SV controls Output 1 which will be maintained ON.

Total Counting

A single count setting value SV is available in Total Counting. Both Outputs 1 and 2 operate concurrently and will turn ON momentarily or will be maintained ON depending on the Output Mode selected.

Dual Counting

A single count setting value SV is available in Dual Counting. Both Outputs 1 and 2 operate concurrently and will turn ON momentarily or will be maintained ON depending on the Output Mode selected.

Company Information Information

CTT Series - Digital Counter / Timer / Tachometer

Counting down

Note: (A) has to be larger than width of min. Input signal

Counting Down

With the input signal OFF at input CP2, each leading edge of the input signal at CP1 will decrement the count present value PV by 1. Turning ON the input signal at CP2 will prohibit the input signal at CP1 from decrementing the PV.

With the input signal ON at input CP1, each trailing edge of the input signal at CP2 will decrement the count present value PV by 1. Turning OFF the input signal at CP1 will prohibit the input signal at CP2 from decrementing the PV.

Note: (B) has to be larger than width of $1 / 2 \mathrm{~min}$. input signal.

Counting Up / Counting Down

Each leading edge of the input signal at CP1 will increment the count present value PV by 1.

Each leading edge of the input signal at CP2 will decrement the count present value PV by 1.

Counting Up / Command Counting Down

With the input signal OFF at input CP2, each leading edge of the input signal at CP1 will increment the count present value PV by 1.

With the input signal ON at input CP2, each leading edge of the input signal at CP1 will decrement the count present value PV by 1.

Addition

Each leading edge of the input signal at CP1 will increment the count present value PV by 1.
Each leading edge of the input signal at CP1 will increment the count present value PV by 1 .

Subtraction

Each leading edge of the input signal at CP1 will increment the count present value PV by 1.
Each leading edge of the input signal at CP2 will decrement the count present value PV
by 1 .

CTT Series - Digital Counter / Timer / Tachometer

Timing Charts

Signal On Delay 1 (5andi)

With power applied to the CTT, the leading edge of the input signal at START will begin the timing period setting value SV (timing up or down based on parameter (of the timing period both outputs will turn ON momentarily for the time set in the output pulse width parameter (Eail it) or will be maintained ON if the output pulse width parameter (EDEEA) is set to 0.00 . The trailing edge of the "start" signal has no effect on the outputs or timing period.
The leading edge of a "reset" input signal at RST1 will turn OFF the outputs and reset the timing period. The "reset" signal minimum pulse width is set by reset pulse width parameter ($\boldsymbol{\text { EFSF}}$) or DIP Switch 8.
The leading edge of a "pause" input signal at GATE will pause the timing period after it has been started. The timing period will continue after the trailing edge of the external switch "pause" (Gate) signal.
When power is removed, both outputs will turn OFF and the timing period will be reset.

CTT Series - Digital Counter / Timer / Tachometer

Signal On Delay 2 (5andil)

With power applied to the CTT, the leading edge of the input signal at START will begin the timing period setting value SV (timing up or down based on parameter (of the timing period both outputs will turn ON momentarily for the time set in the output pulse width parameter (EGitEI) or will be maintained ON if the output pulse width parameter (EaitEI) is set to 0.00. The trailing edge of the "start" signal will turn OFF the outputs and reset the timing period.

The leading edge of a "reset" input signal at RST1 will turn OFF the outputs and reset the timing period. The "reset" signal minimum pulse width is set by reset pulse width parameter (EESE) or DIP Switch 8.
The leading edge of a "pause" input signal at GATE will pause the timing period after it has been started. The timing period will continue after the trailing edge of the external switch "pause" (Gate) signal.

When power is removed, both outputs will turn OFF and the timing period will be reset.

Signal Off Delay (5GFFE)

With power applied to the CTT, the leading edge of the input signal at START will immediately turn ON the outputs. The trailing edge of the "start" signal will begin the timing period setting value SV (timing up or down based on parameter ($\mathbf{⿴ 囗}$ fartil) or by DIP switch 2). At the end of the timing period both outputs will turn OFF. The leading edge of a "start" signal applied during a previously initiated timing period will reset the timing period.
The leading edge of a "reset" input signal at RST1 will turn OFF the outputs and reset the timing period. The "reset" signal minimum pulse width is set by reset pulse width parameter ($\boldsymbol{E E} 5 \boldsymbol{F}$) or DIP Switch 8.
The leading edge of a "pause" input signal at GATE will pause the timing period after it has been started. The timing period will continue after the trailing edge of the external switch "pause" (Gate) signal.
When power is removed, both outputs will turn OFF and the timing period will be reset.

Signal On (5an)

With power applied to the CTT, the leading edge of the input signal at START will immediately turn ON the outputs and begin the timing period setting value SV (timing up or down based on parameter ($\mathbf{B}_{\text {Rand }}$) or by DIP switch 2). The trailing edge of the "start" signal has no effect on the outputs or timing period. At the end of the timing period both outputs will turn OFF and the timing period will reset. The leading edge of a "start" signal applied during a previously initiated timing period will not reset the timing period.
The leading edge of a "reset" input signal at RST1 will turn OFF the outputs and reset the timing period. The "reset" signal minimum pulse width is set by reset pulse width parameter (FEST) or DIP Switch 8.
The leading edge of a "pause" input signal at GATE will pause the timing period after it has been started. The timing period will continue after the trailing edge of the external switch "pause" (Gate) signal.
When power is removed, both outputs will turn OFF and the timing period will be reset.

CTT Series - Digital Counter / Timer / Tachometer

Power On Delay (Pand)

When power is applied to the CTT, the timing period setting value SV will begin (timing up or down based on parameter (momentarily for the time set in the output pulse width parameter (Eate if) or will be maintained ON if the output pulse width parameter (Eaite it) is set to 0.00 .

The leading edge of a "reset" input signal at RST1 will turn OFF the outputs and reset the timing period. The "reset" signal minimum pulse width is set by reset pulse width parameter (-EGT)
The leading edge of a "pause" input signal at GATE or signal at START will pause the timing period after it has been started. The timing period will continue after the trailing edge of the external switch "pause" (Gate) or "start" signal.
When power is removed, both outputs will turn OFF and the timing period will be reset.

Power On Delay HOLD (Pandif)

When power is applied to the CTT, the timing period setting value SV will begin (timing up or down based on parameter (momentarily for the time set in the output pulse width parameter
(EatEE) or will be maintained ON if the output pulse width parameter (Eqilt it) is set to 0.00 .
The leading edge of a "reset" input signal at RST1 will turn OFF the outputs and reset the timing period. The "reset" signal minimum pulse width is set by reset pulse width parameter (- E5F)

The leading edge of a "pause" input signal at GATE or signal at START will pause the timing period after it has been started. The timing period will continue after the trailing edge of the "pause" (Gate) or "start" signal.
When power is removed, both outputs will turn OFF. The last state of the outputs and the last value of the current timing period will be "stored" in eeprom when power is removed. When power is reapplied the outputs will return to their last state and timing will resume from the last value of the timing period.

Pushbuttons

CTT Series - Digital Counter / Timer / Tachometer

With power applied to the CTT, the leading edge of the input signal at START will begin the timing period setting value SV (timing up or down based on parameter (国 Rant). At the end of the timing period, the timing period will reset and repeat automatically.
If the output pulse width parameter (EqitE) is set to 0.00 both outputs will turn ON at the end of the first timing period, turn OFF at the end of the next timing period, turn ON at the end of the next timing period, etc.
If the output pulse width parameter (Eailt is is set to >0.00 both outputs will turn ON momentarily for the time set in the output pulse width parameter (EqUIE A) at the beginning of the each timing period.

The trailing edge of the "start" signal has no effect on the outputs or timing period.
The leading edge of a "reset" input signal at RST1 will turn OFF the outputs and reset the timing period. The "reset" signal minimum pulse width is set by reset pulse width parameter ($\boldsymbol{\text { EESF}}$) . The leading edge of a new "start" signal is necessary to restart the cycle.
The leading edge of a "pause" input signal at GATE will pause the timing period after it has been started. The timing period will continue after the trailing edge of the external switch "pause" (Gate) signal.
When power is removed, both outputs will turn OFF and the timing period will be reset.

Repeat Cycle HOLD (r댚T)

With power applied to the CTT, the leading edge of the input signal at START will begin the timing period setting value SV (timing up or down based on parameter (\mathbf{B} Ratit). At the end of the timing period, the timing period will reset and repeat automatically.
If the output pulse width parameter (Equt I) is set to 0 , both outputs will turn ON at the end of the first timing period, turn OFF at the end of the next timing period, turn $O N$ at the end of the next timing period, etc.
If the output pulse width parameter (EGitEI) is set to >0.00, both outputs will turn ON momentarily for the time set in the output pulse width parameter (Eaitt it at the beginning of the each timing period.
The trailing edge of the "start" signal has no effect on the outputs or timing period.

The leading edge of a "reset" input signal at RST1 will turn OFF the outputs and reset the timing period. The "reset" signal minimum pulse width is set by reset pulse width parameter ($\boldsymbol{\text { ELEFP}}$). The leading edge of a new "start" signal is necessary to restart the cycle.
The leading edge of a "pause" input signal at GATE will pause the timing period after it has been started. The timing period will continue after the trailing edge of the external switch "pause" (Gate) signal.
When power is removed, both outputs will turn OFF. The last state of the outputs and the last value of the current timing period will be "stored" in Eeprom when power is removed. When power is reapplied the outputs will return to their last state and timing will resume from the last value of the timing period by the leading edge of a new "start" signal.

CTT Series - Digital Counter / Timer / Tachometer

Repeat Cycle 2 (\boldsymbol{F} [ㅐㄹㄹ)

With power applied to the CTT, the leading edge of the input signal at START will begin the timing period timing up or down based on parameter (\boldsymbol{B} 回相). At the end of the timing period, the timing period will reset and repeat automatically.
Both outputs will turn ON at the beginning of the first timing period and turn OFF when the timing period reaches time period setting SV2. The outputs will turn ON again when the time period reaches time period setting SV1.

The trailing edge of the "start" signal has no effect on the outputs or timing period.
The leading edge of a "reset" input signal at RST1 will turn OFF the outputs and reset the timing period. The "reset" signal minimum pulse width is set by reset pulse width parameter
($\boldsymbol{\text { EFFF}}$). The leading edge of a new "start" signal is necessary to restart the cycle.
The leading edge of a "pause" input signal at GATE will pause the timing period after it has been started. The timing period will continue after the trailing edge of the external switch "pause" (Gate) signal.
When power is removed, both outputs will turn OFF and the timing period will be reset.

Signal Cumulate (5Lin)

With power applied to the CTT, the leading edge of the input signal at START will begin the timing period setting value SV
 edge of the "start" signal will pause the timing period. The leading edge of a subsequent "start" signal will resume timing from the last value of the timing period. At the end of the timing period both outputs will turn ON.
The leading edge of a "reset" input signal at RST1 will turn OFF the outputs and reset the timing period. The "reset" signal minimum pulse width is set by reset pulse width parameter (-E5T)
The leading edge of a "pause" input signal at GATE will pause the timing period after it has been started. The timing period will continue after the trailing edge of the external switch "pause" (Gate) signal.
When power is removed, both outputs will turn OFF. The last state of the outputs and the last value of the current timing period will be "stored" when power is removed. When power is reapplied the outputs will return to their last state and timing will resume from the last value of the timing period by the leading edge of a new "start" signal.

Pushbuttons

CTT Series - Digital Counter / Timer / Tachometer

Signal Twin ON-Start (ELEn)

With power applied to the CTT, the leading edge of the input signal at START will turn ON the outputs and begin the timing period timing up or down based on parameter
(\mathbf{B} RadI). When the timing period reaches time setting SV2 the outputs will turn OFF and the time period will reset and restart automatically. When the time period now reaches time setting SV1 the outputs will turn ON again and the time period will reset and repeat automatically.
The trailing edge of the "start" signal has no effect on the outputs or timing period.
The leading edge of a "reset" input signal at RST1 will turn OFF the outputs and reset the timing period. The "reset" signal minimum pulse width is set by reset pulse width parameter ($\boldsymbol{\text { ELF}}$) $)$. The leading edge of a new "start" signal is necessary to restart the cycle.
The leading edge of a "pause" input signal at GATE will pause the timing period after it has been started. The timing period will continue after the trailing edge of the external switch "pause" (Gate) signal.
When power is removed, both outputs will turn OFF and the timing period will be reset.

Signal Twin OFF-Start (ELGFF)

With power applied to the CTT, the leading edge of an input signal at START will begin the timing period timing up or down based on parameter (\mathbf{B} RatI). When the timing period reaches time setting SV1 the outputs will turn ON and the time period will reset and restart automatically. When the time period now reaches time setting SV2 the outputs will turn OFF again and the time period will reset and repeat automatically.
The trailing edge of the "start" signal has no effect on the outputs or timing period.
The leading edge of a "reset" input signal at RST1 will turn OFF the outputs and reset the timing period. The "reset" signal minimum pulse width is set by reset pulse width parameter ($\boldsymbol{E E S F}$). The leading edge of a new "start" signal is necessary to restart the cycle.
The leading edge of a "pause" input signal at GATE will pause the timing period after it has been started. The timing period will continue after the trailing edge of the external switch "pause" (Gate) signal.
When power is removed, both outputs will turn OFF and the timing period will be reset.

CTT Series - Digital Counter / Timer / Tachometer

Tachometer Performance Specifioations	
Output Modes	2Lo1Lo, 2Lo1Hi, 2Hi1Lo, and 2Hi1Hi (See tachometer output mode charts below).
Number of Digits	6 digits on each line
Input Frequency	$1 \mathrm{~Hz}, 30 \mathrm{~Hz}, 200 \mathrm{~Hz}, 1 \mathrm{kHz}, 5 \mathrm{kHz}, 10 \mathrm{kHz}$
Display	Present values: red LED, character height: 8mm; Set value: green LED, character height: 6mm
Timer Precision	Power 0N start Max $\pm 0.01 \% \pm 0.05$ sec, Signal start Max $\pm 0.01 \% \pm 0.03$
Start Input Response	Less than 15ms $/ 5 \mathrm{~ms} / 1 \mathrm{~ms}$
External Reset	Minimum reset input signal width 1ms or 20ms (selectable)
Output Duration (Flicker)	$10-9990 \mathrm{~ms}$ variable every 10 ms

Tachometer Output Mode Charts

2Lo1Lo	$2 \mathrm{Lo1Hi}$
Measurement value \leq OUT1 set value : OUT1 ON Measurement value \leq OUT2 set value : OUT2 ON	

2Hi1Lo	2 Hi 1 Hi
Measurement value \leq OUT1 set value : OUT1 ON Measurement value \geq OUT2 set value : OUT2 ON	Measurement value \geq OUT1 set value : OUT1 ON Measurement value \geq OUT2 set value : OUT2 ON

Counter Example:

Using the counter feature of the CTT to count the total number of pieces in a box to signal a conveyor to advance to the next station.

CTT Series - Digital Counter / Timer / Tachometer

Timer Example:

A basic Timer used to control the clamp time of a compression model press. When the operator signals, the mold is loaded with material. When a start button is pressed, the hydraulic cylinder closes the press to make a limit switch which starts the CTT timing. Upon completion of the timer cycle, Output 1 is turned on and the press is opened by the hydraulic cylinder.

Tachometer Example:

Using PSCALE to convert pulses into engineering units

The PSCALE feature of the CTT is very useful in converting the pulsed signal from an encoder or sensor into a usable unit of measurement.
For example, if connecting a proximity switch to the CTT to monitor the speed of a motor using a sensing gear, there is a simple calculation to convert the pulses from the sensor to Motor RPMs.
Using the following formula, you can calculate a PSCALE value to change a pulse signal into RPMs. First, obtain the pulses per revolution (ppr) or number of teeth on the sensing gear.

For example, in the illustration below, there are 38 teeth on the gear or 38 ppr. If the gear is coupled directly to the motor, this is all that is required to perform the calculation.
PSCALE $=60 /$ ppr or $60 / 38$
PSCALE $=1.579$
With the PSCALE set to 1.579 for every 38 input cycles the CTT will display a value of 1 .

[^0]: This chart is provided as a guideline only, and the ratings and values are not guaranteed to be accurate. It is the users' responsibility to properly size their control

[^1]: Relays and
 Timers

 Pneumatics:
 Air Prep

 Pneumatics:
 Directional Control
 Valves
 Pneumatics:
 Cylinders

 Pneumatics:
 Tubing
 Pneumatics:
 Air Fittings

 Appendix
 Book 2

 Terms and
 Conditions

[^2]: * Note: If surge voltage exceeds 3000V, use surge suppressors.

